Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ingeniería y Ciencias Agropecuarias
Departamento: Ciencias Básicas
Área: Matemática
(Programa del año 2011)
(Programa en trámite de aprobación)
(Programa presentado el 08/07/2011 09:51:54)
I - Oferta Académica
Materia Carrera Plan Año Periodo
Matemática II Contador Publico Nacional 2011 2° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
MAY, GLADYS CARMEN Prof. Responsable P.Adj Exc 40 Hs
ECHEVARRIA, GRACIELA DEL VALLE Responsable de Práctico JTP Exc 40 Hs
ESPERANZA, JAVIER DIEGO Auxiliar de Práctico A.1ra Semi 20 Hs
HIDALGO, GABRIEL EDUARDO Auxiliar de Práctico A.1ra Semi 20 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
6 Hs. 3 Hs. 3 Hs.  Hs. 6 Hs. 2º Cuatrimestre 08/08/2011 18/11/2011 15 90
IV - Fundamentación
Es una asignatura que sirve de herramienta, para las asignaturas básicas y específicas de la carrera como: computación, matemática financiera, contabilidad economia,etc.
Dado que la economía trata conceptos de naturaleza escencialmente cuantitativa, por ejemplo: precio, costo, escala de salarios, inversiones, ingresos y utilidades, gran parte del análisis económico es ineludiblemente matemático. Las matemática proporcionan una estructura sistemática, lógica dentro de la cual pueden estudiarse las relaciones cuantitativas.
V - Objetivos
- Lograr que los alumnos adquieran los conocimientos básicos incluidos en el programa analítico.
- Apoyarse en la intuición de los alumnos a fin de omitir pesadas demostraciones de teoremas que no aportan nada conceptual ,usar dichos resultados para el desarrollo de temas posteriores, a fin de no descuidar la parte formal se incluirán demostraciones más sencillas o aquellas que se consideren explícitas.
- Lograr que los alumnos adquieran la capacidad de interpretar los problemas concretos.
- Lograr que los alumnos aprendan a relacionar los temas de la asignatura, con temas de materias específicas de la carrera.
- Desarrollar habilidades para expresar en lenguaje matemático fenómenos y procesos de la realidad
VI - Contenidos
UNIDAD 1: FUNCIONES REALES DE VARIAS VARIABLES
Funciones definición y conjunto imagen de una función de dos variables independientes .Funciones de dos variables en Economía. Representación Geométrica desde las funciones de dos variables. Recurso de trazas y curvas de nivel. Funciones más sencillas: planos, cilindros, etc. Superficies cuádricas. Generalización del concepto a n variables.

UNIDAD 2: LIMITE Y CONTINUIDAD
Límite funcional para funciones de dos variables independientes (límite doble simultáneo)Límites reiterados o sucesivos. Límites radiales .Funciones continuas en un punto y en un intervalo. Continuidad y límites.

UNIDAD 3: CÁLCULO DIFERENCIAL PARA VARIAS VARIABLES
Derivadas parciales en un punto. Función derivada .Derivadas parciales Interpretación geométrica de la derivada parcial. Aplicaciones Derivadas sucesivas. Conmutabilidad de las derivadas sucesivas. Derivadas de funciones compuestas. Funciones implícitas. Incremento y diferencial total. Máximos y mínimos. Multiplicadores de Lagrange.

UNIDAD 4: INTEGRACIÓN
Cálculo de primitivas. Relación entre la primitiva de una función y la integral definida de la misma en un intervalo. Área bajo una curva. Integrales Múltiples.

UNIDAD 5: SISTEMA DE ECUACIONES LINEALES
Introducción a los sistemas de ecuaciones lineales. Ecuaciones lineales con dos incógnitas. Sistemas de ecuaciones lineales. Sistemas equivalentes. Resolución de sistemas de m ecuaciones con n incógnitas. Operaciones elementales. Eliminación Gaussiana. Sistema Homogéneos.

UNIDAD 6 MATRICES
Concepto de matriz. Matrices especiales. Matriz diagonal, matriz nula, matriz transpuesta, matriz triangular, matriz simétrica. Operaciones con matrices: suma de matrices, producto de un escalar por una matriz, producto de matrices. Propiedades de la suma y del producto. Matrices invertibles. Matrices elementales un método para hallar la inversa de una matriz. Resultado acerca de los sistemas de ecuaciones y la inversibilidad. Matriz insumo-producto. Modelo de Leontief.

UNIDAD 7: DETERMINANTES
Definición: determinante de segundo orden. Determinante de tercer orden. Regla de Sarrus. Desarrollo de un determinante por sus menores algebraicos o cofactores. Propiedades de los determinantes. Adjunto de una matriz. Matriz inversa. Regla de Cramer. Teorema de Rouché- Frobeniu

VII - Plan de Trabajos Prácticos
El plan o programa de trabajos prácticos, comprende la realización de sendos trabajos prácticos por unidad temática que comprende el programa analítico. Estos trabajos prácticos se realizaran en los días que la cátedra disponga a tal efecto y durante tres horas semanales. Consistirá fundamentalmente en la resolución por parte de los alumnos de problemas de aplicación y ejercicios que la cátedra seleccione a tal efecto y que se ajustará natural y orgánicamente a los temas teóricos desarrollados.
VIII - Regimen de Aprobación
REGIMEN DE ALUMNOS REGULARES

Cada alumno podrá obtener la condición de alumno regular de la asignatura y acceder a un examen final para aprobar la misma si cumple con los siguientes requisitos:
a- Reunir un porcentaje del 80% de asistencia a las clases de teoría y clases de trabajos prácticos.
b-Tener aprobado las dos evaluaciones parciales escritas que sobre temas fundamentales del programa analítico propondrá la cátedra a los alumnos para su desarrollo. La evaluación parcial se considerará aprobada siempre que hubiese respondido correctamente a no menos del 65% de los ejercicios propuestos.
Cada evaluación parcial tendrá su recuperación, más una recuperación general, la cuál podrá incluir solo una de las evaluaciones parciales según la situación del alumno. Habrá además otra recuperación general exclusivamente para los alumnos que trabajan.
La modalidad del examen final será escrita; si la cantidad de inscriptos para rendir dicha asignatura en las carreras de Contador Público Nacional y Lic. en Administración de Empresas supera los 50 alumnos, en caso contrario será oral.


REGIMEN DE ALUMNOS LIBRES

Para poder aprobar la asignatura un alumno libre deberá rendir un examen escrito eliminatorio que versará sobre aplicaciones prácticas de los conceptos teóricos del programa analítico presentado. Para aprobar dicho examen escrito deberá contar con el 75% de los ejercicios propuestos bien resueltos. La aprobación del examen escrito le dará derecho de una evaluación oral en el cual expondrá sobre los temas teóricos que solicite el tribunal.
La aprobación de ambos exámenes (escrito y oral) le permitirá alcanzar la aprobación de la asignatura.
IX - Bibliografía Básica
[1] -ALGEBRA LINEAL .Stanley I. Grossman.Ed. Mc Graw Hill. 6ª Edición.Año 2008
[2] -INTRODUCCIÓN AL ÁGEBRA LINEAL. Howard Anton Ed. Limusa .2ª Edición. Año 2000.
[3] -NTRODUCCIÓN AL ANÁLISIS MATEMÁTICO.( Cálculo 2 ).Hebe T. Rabufetti.Ed. Ateneo.Undécima Edición. Año1991.
[4] -ALGEBRA LINEAL.Harvey Gerber.Grupo Editorial Iberoamericana.Año 1997
[5] -INTRODUCCIÓN A LA MATEMÁTICA DE LOS NEGOCIOS Y LA ECONOMÍA.Freund Jhon E. Ed. Prentice Hall Internacional.1º Ed. Año 1974.
[6] -MATEMÁTICAS PARA ADMINISTRACIÓN Y ECONOMÍA.Jean E. WEBER.Cuarta Edición.Editorial Harla.MéxicoAño 1982
[7] - CALCULO APLICADO.Stefan Waner.Steven r. Costenoble. 2º Edición.Año 2002 . Editorial Thomson.
[8] -CALCULO MULTIVARIABLE. James Stewart..4º Edición.Año 2006.Editorial Thomson-learning
X - Bibliografia Complementaria
[1] -EL CÁLCULO CON GEOMETRÍA ANALÍTICA. Louis Leithold. Ed Harla .6ªEdición.Año 1992
[2] -MATEMÁTICAS PARA ADMINISTRACIÓN Y ECONOMÍA..Ernest F. Haeussler, Jr Richard S. Paul.Grupo Editorial Iberoamérica.2ºEd. Año 1992
[3] -METODOS FUNDAMENTALES DE ECONOMIA ECONOMICA.ALPHA Chiang.Amorrortu editores Buenos Aires.Año 1982
[4] -CÁLCULO DIFERENCIAL E INTEGRAL.N.Piskunov.Ed.Grupo Noriega.1ºE. Año 1991
[5] -MATEMÁTICAS APLICADAS PARA ADMINISTRACIÓN , ECONOMÍA Y CIENCIAS SOCIALES. Frank S. Budnick. Tercera Edición. Ed. Mc Graw Hill
XI - Resumen de Objetivos
Lograr que los alumnos, adquieran los distintos conceptos que le serviran de herramientas para aplicarlos en temas especificos de la carrera que estan cursando.
XII - Resumen del Programa
Funciones de varias variables. Limite, derivadas, máximos y mínimos de funciones de dos variables. Multiplicadores de Lagrange. Sistema de ecuaciones de m ecuaciones con n-incógnitas. Eliminación Gaussiana. Matrices. Matriz Insumo producto. Determinantes.
XIII - Imprevistos