Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2008)
(Programa en trámite de aprobación)
(Programa presentado el 09/12/2008 09:02:14)
I - Oferta Académica
Materia Carrera Plan Año Periodo
SEMINARIO II P.T.C.E.G.B.E.P.M. 2008 2° cuatrimestre
SEMINARIO II PROF.UNIV.EN MATEMATICAS 2008 2° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
JAUME, DANIEL ALEJANDRO Prof. Responsable P.Adj Exc 40 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 2 Hs. 2 Hs.  Hs. 4 Hs. 2º Cuatrimestre 11/08/2008 21/11/2008 15 70
IV - Fundamentación
Un adecuado uso de la lógica, especialmente un buen manejo de la cuantificación, son transversales a toda la Matemática. La teoría de sucesiones y series numéricas permite ejemplificar el uso de doble cuantificación y desarrollar gradualmente la noción de convergencia.
V - Objetivos / Resultados de Aprendizaje
Que el alumno entienda la necesidad de demostrar las afirmaciones en Matemática.
Que el alumno sea capaz de escribir de forma matemáticamente correcta.
Que el alumno sea capaz de seguir demostraciones básicas.
Que el alumno sea capaz de construir demostraciones elementales propias.
Qué el alumno comprenda y maneje la noción de convergencia en sucesiones y series numéricas.
Generar en los alumnos el hábito de estudio.
Desarrollar la capacidad de los alumnos para trabajar en grupos.
VI - Contenidos
Unidad Nº 1: Lógica
Proposiciones. Conectivos lógicos. Implicación lógica. Equivalencia Lógica. Proposiciones Categóricas. Diagramas de Venn. Cuantificación. Nociones de Teoría de Conjunto.

Unidad Nº 2: Sucesiones.
Sucesión. Convergencia. Teorema de Weierstrass. Extremo superior e inferior. Límite superior e inferior de una sucesión, propiedades.

Unidad Nº 3: Series numéricas
Series. Serie telescópica. Condición de Cauchy. Series de términos positivos y alternantes. Criterios de Convergencia. Convergencia absoluta. Reordenamientos e inserción de paréntesis. Suma de Césaro. Series dobles.

VII - Plan de Trabajos Prácticos
Se realizarán 9 trabajos prácticos, 3 por unidad
VIII - Regimen de Aprobación
Regularización: Resolución individual de los trabajos prácticos y tres parciales escritos, con sus respectivas recuperaciones. Nota mínima de aprobación: 70 %, escala porcentual.

Promoción sin examen: Regularización con 80% como nota mínima en cada parcial (en primera instancia o en su recuperación) y aprobación de un coloquio general.

Para los alumnos libres, el examen final consta de dos instancias: las primera, escrita, consistente en la resolución de problemas y su aprobación es condición necesaria para acceder a la segunda, de carácter coloquial y más teórico.
IX - Bibliografía Básica
[1] 1. Richard Johnsonbaugh, Matemáticas Discretas. Grupo Editorial Iberoamérica. 1995.
[2] 2. Yu Takeuchi, Series y Sucesiones, Tomo I. Editorial Limusa
[3] 1. Kitchen. A. Cálculo. Ed. McGraw Hill. 1998.
X - Bibliografia Complementaria
[1] 2. Anton, H. Cálculo I. Ed. Limusa 1991.
[2] 3. Copi. I. Introducción a la Lógica. Ed. EUDEBA 1990.
[3] 4. Rey Pastor, Pi Calleja y Trejo. Análisis Matemático, Tomo I. Ed Kapeluz 1985.
[4] 5. Roger Godement, Analyse mathématique I. Springer 1998.
[5] 6. Poyla, G & Szegö, G. Problems and theorems in Analysis I. Springer 1998.
[6] 7. Bromwhich, T An Introduction to the Theory of Infinite Series. MacMillan. 1949
XI - Resumen de Objetivos
Un adecuado uso de la lógica, especialmente un buen manejo de la cuantificación, son transversales a toda la Matemática. La teoría de sucesiones y series numéricas permite ejemplificar el uso de doble cuantificación y desarrollar gradualmente la noción de convergencia.
Se espera:
Que el alumno entienda la necesidad de demostrar las afirmaciones en Matemática.
Que el alumno sea capaz de escribir de forma matemáticamente correcta.
Que el alumno sea capaz de seguir demostraciones básicas.
Que el alumno sea capaz de construir demostraciones elementales propias.
Qué el alumno comprenda y maneje la noción de convergencia en sucesiones y series numéricas.
Generar en los alumnos el hábito de estudio.
Desarrollar la capacidad de los alumnos para trabajar en grupos
XII - Resumen del Programa

Unidad Nº 1: Lógica

Unidad Nº 2: Sucesiones Numéricas

Unidad Nº 3: Series Numéricas.

XIII - Imprevistos
 
XIV - Otros