Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2020)
I - Oferta Académica
Materia Carrera Plan Año Periodo
PROBABILIDAD Y ESTADISTICA PROF.MATEM. 21/13 2020 1° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
BONIFACIO, AGUSTIN GERMAN Prof. Responsable P.Adj Exc 40 Hs
BLOIS, MARIA INES Responsable de Práctico JTP Semi 20 Hs
LOPEZ ORTIZ, JUAN IGNACIO Responsable de Práctico A.1ra Simp 10 Hs
MUÑOZ, NELLY NANCY Auxiliar de Práctico A.1ra Exc 40 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 3 Hs. 3 Hs.  Hs. 6 Hs. 1º Cuatrimestre 25/03/2020 03/07/2020 15 90
IV - Fundamentación
La probabilidad y la estadística juegan un papel primordial en los avances de la ciencia y la tecnología, al proporcionar herramientas para analizar variabilidad, determinar relaciones entre variables, diseñar experimentos, mejorar predicciones y toma de decisiones en situaciones de incertidumbre.
El programa responde a los contenidos mínimos de las carreras para las cuales se dicta y el enfoque incluye clases teóricas y prácticos de aula con énfasis en demostraciones formales y aplicaciones.
V - Objetivos / Resultados de Aprendizaje
1. Conocer conceptos y técnicas de Probabilidad y Estadística, y saber aplicarlos en la resolución de problemas.
2. Desarrollar destreza en el cálculo de probabilidades.
3. Que los alumnos sean capaces de entender y desarrollar demostraciones formales.
VI - Contenidos
Problemas estadísticos. Población y muestra. Aleatoriedad. Concepto de estadística descriptiva e inferencial. Tipos de datos. Representaciones gráficas. Tablas de frecuencias y de frecuencias relativas. Medidas de centralización y dispersión poblacionales y muestrales. Teorema de Tchebychev.


Distribución de probabilidad. Propiedades. Distribución de igual probabilidad. Noción clásica de probabilidad. Elementos de análisis combinatorio. Noción frecuencial de probabilidad. Probabilidades condicionales. Interpretación frecuencial. Propiedades. Teorema de la probabilidad total. Fórmula de Bayes. Regla de multiplicación. Independencia de eventos.


Distribuciones y variables aleatorias discretas. Funciones de densidad y distribución. Media y varianza. Ejemplos de distribuciones discretas. Bernoulli, binomial, geométrica, Poisson.


Distribuciones y variables aleatorias continuas. Función de densidad y distribución. Media y varianza. Distribución normal. Cálculo de probabilidades. Aproximación normal para la distribución binomial. Teorema de DeMoivre-Laplace.


Ejemplos de distribuciones continuas. Distribución uniforme. Distribución exponencial. Generadores de números aleatorios. Operaciones con variables aleatorias. Suma y producto de variables aleatorias. Distribuciones Erlang, Gama, Chi-cuadrado y Student.


Distribuciones muestrales. Teorema Central del Límite. Distribución de la media y la varianza muestral. Distribución de una proporción muestral. Distribución de una diferencia de medias muestrales. Distribución de una diferencia de proporciones muestrales.


Estimadores. Estimadores puntuales para la media y la varianza. Intervalo de confianza para la media poblacional para muestras grandes. Teorema central del límite. Intervalo de confianza para proporciones, diferencia de medias y proporciones.


Pruebas de hipótesis. Elementos de una prueba. Prueba de hipótesis para la media poblacional. Prueba de hipótesis para una proporción poblacional. Prueba de hipótesis para diferencia de medias y proporciones poblacionales.


Modelo probabilístico lineal simple. Método de mínimos cuadrados. Cálculo y estimación para la s2. Inferencia sobre el parámetro del modelo. Estimación. Coeficiente de correlación.


VII - Plan de Trabajos Prácticos
Los prácticos consistirán en la resolución y presentación escrita y oral de ejercicios.
VIII - Regimen de Aprobación
Se propone un régimen de promoción. Se tomarán dos (2) exámenes parciales de carácter teórico-práctico. Cada uno de los exámenes tendrá dos recuperaciones.
• Para promocionar el alumno deberá:
1. Obtener al menos 7 (siete) en cada parcial teórico-práctico (o su recuperación).
2. Asistir al menos al 80% de las clases prácticas y al 80% de las clases teóricas.
• El alumno que no promocione, pero que haya obtenido al menos 6 (seis) en los exámenes parciales prácticos (o sus recuperaciones) y haya asistido al menos al 80% de las clases regularizará la materia y deberá rendir un examen teórico en los turnos previstos en el calendario académico.
• El alumno que obtenga menos de 6 (seis) en algún examen parcial y sus recuperatorios, o asista a menos del 80% de las clases quedará libre. Los alumnos libres deberán rendir un examen práctico y uno teórico en los turnos previstos en el calendario académico. La reprobación de alguno de ellos es eliminatoria. En caso de aprobar ambos, la nota surgirá como un promedio de las dos notas obtenidas.
IX - Bibliografía Básica
[1] • Estadística para Administradores, W. Mendenhall, Grupo Editorial Iberoamérica, 1990.
X - Bibliografia Complementaria
[1] Cesco J. C., Apuntes de Probabilidad y Estadística, 1991.
[2] Ross S., A First Course in Probability, Macmillan Publishers, 1988
[3] Mendenhall W., Sheaffer R. y Wackerly D., Estadística Matemática con Aplicaciones, Grupo Editorial Iberoamérica, 1994.
XI - Resumen de Objetivos
1. Conocer conceptos y técnicas de Probabilidad y Estadística, y saber aplicarlos en la resolución de problemas.
2. Desarrollar destreza en el cálculo de probabilidades.
3. Que los alumnos sean capaces de entender y desarrollar demostraciones formales.
XII - Resumen del Programa
Estadística descriptiva e inferencial. Población y muestras. Probabilidades. Distribuciones discretas y continuas. Distribución normal. Estimación puntual y por intervalos de confianza. Pruebas de hipótesis. Regresión lineal. Correlación.
XIII - Imprevistos
En virtud de la situación de aislamiento social, preventivo y obligatorio debido a la pandemia de COVID-19 se han tomado las siguientes medidas:

1. La materia se dicta de forma virtual a través de la plataforma Google Classroom (código de la clase: bihkxaf), en la cual se encuentran disponibles presentaciones (slides) y videos de las clases, además de la bibliografía obligatoria.
2. Las actividades prácticas se realizan median "tareas" de Google Classroom que los alumnos deben entregar periódicamente a través de la plataforma. Se realizan periódicamente clases de consulta virtuales.
3. Los exámenes parciales también se toman a través de la plataforma de manera virtual.
4. Para regularizar y promocionar la materia no se tendrán en cuenta aspectos relativos a las asistencia a clase.
5. Para promocionar la materia, y en caso de ser posible, se espera añadir a las instancias de evaluación virtuales un examen escrito presencial.

Mail de contacto: agustinbonifacio@gmail.com
XIV - Otros