Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas Área: Matematicas |
I - Oferta Académica | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
II - Equipo Docente | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
III - Características del Curso | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
IV - Fundamentación |
---|
El programa responde a los contenidos mínimos de las carreras para las cuales se dicta, y el enfoque teórico-práctico, con demostraciones formales y aplicaciones, tiene como objetivo desarrollar distintas capacidades básicas en Álgebra.
|
V - Objetivos / Resultados de Aprendizaje |
---|
Al finalizar el curso se espera que el alumno sea capaz de:
• Manejar las técnicas primarias de razonamiento en el Algebra. • Ser capaces de reconstruir y analizar una demostración formal. • Ser capaces de demostrar resultados nuevos.- • Saber usar los conocimientos teóricos para resolver problemas de aplicación. • Aplicar las herramientas adquiridas en las demás disciplinas. |
VI - Contenidos |
---|
Conjuntos
Conceptos primitivos: conjunto, elemento y pertenencia. Definición por extensión y por comprensión. Representación simbólica. Representación gráfica: diagramas de Venn. Cardinalidad. Conjuntos especiales: referencial, conjunto unitario y conjunto vacío. Relaciones entre conjuntos: igualdad, inclusión, inclusión estricta. Igualdad de conjuntos y doble inclusión. Familia de partes. Operaciones entre conjuntos: complemento absoluto, complemento relativo o diferencia, unión, intersección y diferencia simétrica. Principio de inducción Notación suma. Notación producto. Principio de inducción. Método de demostración por inducción. Principio de inducción corrido. Principio de inducción global. Axioma del buen orden. Números Enteros Divisibilidad. Números primos. Algoritmo de división. Propiedades del resto. Sistemas de numeración. Congruencias. Máximo común divisor y mínimo común múltiplo. Ecuaciones diofánticas. Congruencias. Ecuación lineal de congruencia. Teorema fundamental de la aritmética. Números racionales e irracionales. Pequeño teorema de Fermat. Teorema Chino del Resto. Números complejos El plano complejo. Operaciones con números complejos. Módulo. Distancia. Representación trigonométrica. El teorema de De Moivre. Raíces enésimas de un número complejo. El grupo de raíces enésimas de la unidad. Polinomios Propiedades del grado. Divisibilidad. Polinomios irreducibles. Algoritmo de división. Teorema del resto. Máximo común divisor. Raíces, multiplicidad. Teorema de Gauss. Factorización. |
VII - Plan de Trabajos Prácticos |
---|
Los trabajos prácticos consistirán en la resolución de ejercicios propuestos.
|
VIII - Regimen de Aprobación |
---|
Se tomarán dos exámenes parciales de carácter teórico−práctico. Cada uno tendrá una recuperación. Si un alumno se presenta a una recuperación para levantar nota, se tendrá en cuenta la mayor nota obtenida. Los alumnos que aprueben los dos parciales (o sus recuperatorios) con un promedio mayor o igual a 8 (ocho) deberán realizar una exposición oral sobre alguno de los temas estudiados en la materias. Quienes realicen satisfactoriamente dicha exposición, se considerarán promocionados.
Los alumnos que aprueben los dos parciales (o sus recuperatorios) con un promedio entre 6 (seis) y 8 (ocho), deberán rendir exámen final. |
IX - Bibliografía Básica |
---|
[1] • Apuntes de las clases teóricas de Algebra I S. Puddu..
[2] • Algebra I. A. Rojo. Editorial Librería El Ateneo. [3] • Notas de álgebra I. E. Gentile. EUDEBA. |
X - Bibliografia Complementaria |
---|
[1]
|
XI - Resumen de Objetivos |
---|
Manejar las técnicas primarias de razonamiento en el Algebra. Ampliar el campo de las herramientas específicas de la disciplina. |
XII - Resumen del Programa |
---|
Conjuntos: relaciones y operaciones entre conjuntos. Principio de inducción. Divisibilidad en Z. Máximo común divisor y mínimo común múltiplo. Teorema fundamental de la aritmética. Aritmética modular. Números complejos. Polinomios. Raíces. Divisibilidad en el anillo de polinomios. |
XIII - Imprevistos |
---|
|
XIV - Otros |
---|
|