Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2014)
I - Oferta Académica
Materia Carrera Plan Año Periodo
TECNOLOGIAS PARA LA ENSEÑANZA DE LA MATEMATICA PROF.MATEM. 21/13 2014 2° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
MELLINCOVSKY, DIANA CELIA Prof. Responsable P.Adj Exc 40 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
8 Hs.  Hs.  Hs.  Hs. 8 Hs. 2º Cuatrimestre 11/08/2014 21/11/2014 15 120
IV - Fundamentación
La inclusión de esta asignatura en el Plan de Estudios procura que el profesor en formación sea una persona de espíritu crítico e integrador, quien ante la avalancha de información indiscriminada, de la cual el ser humano es receptor desde mediados del siglo XX a través de los medios masivos de comunicación y desde fines del mismo siglo a través de las nuevas Tecnologías de Información y Comunicación, pueda
 Aprovechar las TIC como herramientas útiles para la construcción del conocimiento
 Transformar la información indiscriminada recibida a través de las TIC y convertirla en conocimiento a través de un proceso crítico.
 Comprender el espíritu primitivo de la red Internet como espacio para la comunicación y el aprendizaje colaborativo
 Usar el resultado de este proceso en su propio aprendizaje y transmitir ese espíritu crítico a sus alumnos
V - Objetivos / Resultados de Aprendizaje
La asignatura Tecnologías para la Enseñanza de la Matemática procura que el alumno adquiera las siguientes competencias
 Realice búsquedas organizadas de información.
 Establezca los orígenes de la información obtenida y pueda determinar su validez académica.
 Realice exposiciones y presentaciones utilizando como herramientas para ello los programas de computación existentes a tal fin.
 Utilice editores matemáticos para expresar adecuadamente los contenidos simbólicos de sus presentaciones escritas
 Participe en foros de divulgación matemática y científico académicos requiriendo información y brindándola a los mismos.
 Conozca el manejo de diverso software matemático: geometría dinámica, graficadotes, cálculo simbólico.
 Diseñe actividades matemáticas donde el uso de tecnología favorescan la comprensión.
VI - Contenidos
Ejes transversales:
• Resolución de problemas
• Visualización en geometría
• Construcciones geométricas
• Cálculo y Álgebra
• Pedagogía y Didáctica
UNIDAD 1:
Las nuevas tecnologías de la comunicación aplicadas a la enseñanza y aprendizaje de la Matemática.
Modelos Educativos y enseñanzas mediadas por TIC. El aprendizaje colaborativo.
Recursos disponibles en la red relacionados con la Matemática: software, páginas, videos. Uso de editores de ecuaciones, programas de presentación y edición.
UNIDAD 2:
El uso de software de geometría dinámica para la enseñanza de la geometría. Su utilidad para explorar, identificar, conjeturar y validar propiedades. Ventajas y desventajas de los diferentes software disponibles.
Construcciones exploratorias para el aprendizaje de los programas “Geogebra” y “Regla y Compás”. Diseño de actividades para llevar al aula usando estos recursos.
Las cónicas como lugar geométrico. Construcción usando software de geometría dinámica.
Discusión de diferentes problemas, actividades y temas de enseñanza secundaria que se ofrecen en diferentes páginas de geometría dinámica en Internet.
UNIDAD 3:
Uso de software para visualización y graficación de funciones. Exploraciones para el aprendizaje de los programas.
Desigualdades con radicales, desigualdades que involucran funciones transcendentes y racionales, aportes del uso de software para la comprensión de métodos de solución.
Uso de programas de cálculo simbólico. Diseño y discusión de actividades.
El uso de la tecnología como herramienta para favorecer la comprensión de los números reales. Números construibles. El número de Oro. Relación entre fracciones continuas periódicas y los irracionales cuadráticos.

VII - Plan de Trabajos Prácticos
Se trabajará con el marco de “Enseñanza para la comprensión".
Para los trabajos prácticos se tendrán en cuenta los ejes transversales.
Los alumnos deberán:
- Describir e interpretar la situación propuesta estableciendo relaciones entre los datos del problema
- Seleccionar y aplicar algún método, propiedad, postulado, técnica, etc.
- Obtener las conclusiones que se piden en el problema.
- Comunicar las soluciones oralmente.
- Usar además como otra manera de comunicación el aula virtual de la asignatura en plataforma moodle.

Como parte de los trabajos prácticos los alumnos:
- Harán exposiciones y participarán de situaciones didácticas, para enseñar y aprender distintos temas de Geometría.
- Realizarán aplicaciones usando software para geometría y aprovecharan los materiales de internet.
- Establecerán conjeturas, sus limitaciones y posibilidades de modificación.
- Realizarán demostraciones formales de lo conjeturado.
VIII - Regimen de Aprobación
La evaluación consistirá de dos partes:
A) Evaluación continua (trabajos prácticos); considerando los siguientes aspectos: interacciones en el aula, asistencia, presentación de problemas resueltos, exposiciones de problemas y temas asignados.
B) Evaluaciones parciales; se tomaran dos en el cuatrimestre. Cada evaluación parcial tendrá una recuperación. Habrá una recuperación general para aquellos que hayan aprobado uno de los parciales ( 1ª instancia o en la recuperación)
PROMOCIÓN: para promocionar sin examen se debe obtener un mínimo de 7/10 en cada parcial, 7/10 como promedio de A y B y aprobar un coloquio final integrador.
REGULAR: para obtener la condición de regular el puntaje mínimo en cada parcial será de 6/10 y deberá obtener 6/10 (promedio de A y B), la materia se aprobará mediante un examen teórico-práctico en los turnos de examen según el calendario de Facultad.
NO-REGULAR: los alumnos que no alcancen la regularidad y hayan asistido al 60% de las clases podrán aprobar la materia en la modalidad de alumnos libres, de acuerdo con la reglamentación y turnos de exámenes estipulados.
IX - Bibliografía Básica
[1] 1.- Nuevas Tecnologías y Enseñanza de las Matemáticas. García, Alfonso; Martínez, Alfredo; MIñano, Rafael. Editorial Síntesis, Madrid, 1997
[2] 2.- Guía de Apoyo para uso de Moodle 1.9.4 Usuario Profesor; González de Felipe, Ana Teresa. Universidad de Oviedo; www.gnu.org/copyleft/fdl.html
[3] 3.- Geogebra. Carrillo de Albornoz, Agustín; Llamas, Inmaculada. Editorial Alfaomega. México, 2010
[4] 4.- Introduction to Geogebra; Hohenwarter, Judith; Hohenwarter, Markus. www.geogebra.org
[5] 5- Documento de Ayuda de Geogebra, Manual oficial de la versión 3.2 www.geogebra.org
X - Bibliografia Complementaria
[1] 1.- Tecnología Educativa. Recursos, modelos y metodologías. Cukierman, Ariel; Rozenhauz, Julieta; Santángelo, Horacio. Editorial Pearson. Buenos Aires, 2009
[2] 2- Humans- with- Media and the Reorganization of Mathematical Thinking; Borba, Marcelo; Villarreal, Mónica. Editorial Springer; EEUU, 2005.
[3] 3- Cómo Plantear y Resolver problemas. George Polya. 1989. Editorial Trillas. México.
[4] 4.- Para Pensar Mejor. Miguel de Guzmán. Editorial Labor. 1991. España
[5] 5.- Materiales para construir la geometría. C. Alsina. C. Burgues- J- Fortuna. 1991. Edit .Síntesis. Barcelona.
[6] 6.- Colección de Textos para ESO, EGB3 y Polimodal. Distintos autores.
[7] 7.- Problem – Solving. Trhough Problems. Loren C. Larson. Editorial Springer – Verlag. 1983. New York.
[8] 8- Las gráficas de las Funciones como una argumentación del Cálculo. Cordero F. & Solis M. Grupo Editorial Iberoamerica. 2001. Cuadernos Didácticos. Edición Especial.
[9] 9. Aproximaciones sucesivas y sucesiones. Cantoral R. & Reséndiz E. Grupo Editorial Iberoamerica. 2001. Cuadernos Didácticos. Edición Especial.
[10] 10. Una construcción de los números reales positivos. Carlos Luque A., Lyda Mora M. y Johana Torres D, Publicación Univ. Pedagógica Nacional. 2004.
[11] 11. Páginas y Foros de Geometría Dinámica: geometriadinamica.es, www.geometriadinamica.cl
XI - Resumen de Objetivos
OBJETIVOS DEL CURSO (no más de 200 palabras)

La asignatura Tecnologías para la Enseñanza de la Matemática procura que el alumno adquiera las siguientes competencias
 Realice búsquedas organizadas de información.
 Establezca los orígenes de la información obtenida y pueda determinar su validez académica.
 Realice exposiciones y presentaciones utilizando como herramientas para ello los programas de computación existentes a tal fin.
 Utilice editores matemáticos para expresar adecuadamente los contenidos simbólicos de sus presentaciones escritas
 Participe en foros de divulgación matemática y científico académicos requiriendo información y brindándola a los mismos.
 Conozca el manejo de diverso software matemático: geometría dinámica, graficadotes, cálculo simbólico
XII - Resumen del Programa
Ejes transversales:
• Resolución de problemas
• Visualización en geometría
• Construcciones geométricas
• Cálculo y Álgebra
• Pedagogía y Didáctica
UNIDAD 1:
Las nuevas tecnologías de la comunicación aplicadas a la enseñanza y aprendizaje de la Matemática.
Modelos Educativos y enseñanzas mediadas por TIC. El aprendizaje colaborativo.
Recursos disponibles en la red relacionados con la Matemática: software, páginas, videos. Uso de editores de ecuaciones, programas de presentación y edición.

UNIDAD 2:
El uso de software de geometría dinámica para la enseñanza de la geometría. Su utilidad para explorar, identificar, conjeturar y validar propiedades. Ventajas y desventajas de los diferentes software disponibles.
Construcciones exploratorias para el aprendizaje de los programas “Geogebra” y “Regla y Compás”. Diseño de actividades para llevar al aula usando estos recursos.
Las cónicas como lugar geométrico. Construcción usando software de geometría dinámica.
Discusión de diferentes problemas, actividades y temas de enseñanza secundaria que se ofrecen en diferentes páginas de geometría dinámica en Internet.

UNIDAD 3:
Uso de software para visualización y graficación de funciones. Exploraciones para el aprendizaje de los programas.
Desigualdades con radicales, desigualdades que involucran funciones transcendentes y racionales, aportes del uso de software para la comprensión de métodos de solución.
Uso de programas de cálculo simbólico. Diseño y discusión de actividades.
El uso de la tecnología como herramienta para favorecer la comprensión de los números reales. Números construibles. El número de Oro. Relación entre fracciones continuas periódicas y los irracionales cuadráticos.
XIII - Imprevistos
 
XIV - Otros