Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas Área: Matematicas |
I - Oferta Académica | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
II - Equipo Docente | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
III - Características del Curso | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
IV - Fundamentación |
---|
La probabilidad y la estadística juegan un papel primordial en los avances de la ciencia y la tecnología, al proporcionar herramientas para analizar variabilidad, determinar relaciones entre variables, diseñar experimentos, mejorar predicciones y toma de decisiones en situaciones de incertidumbre. Para su enseñanza en los diferentes niveles educativos, los profesores de matemática requieren, además de una sólida formación en éstas áreas del conocimiento, conocer la problemática asociada al proceso de enseñanzaaprendizaje y saber elaborar diferentes estrategias para la transposición didáctica.
|
V - Objetivos / Resultados de Aprendizaje |
---|
Teniendo como marco los objetivos, fundamentos y perfil profesional de los profesorados de Matemática se busca:
1. Estudiar algunos conceptos que complementen los contenidos de la asignatura Probabilidad y Estadística que se cursa previamente, y que son relevantes para los alumnos de los profesorados en Matemática. 2. Que el alumno conozca características del proceso de enseñanzaaprendizaje de la probabilidad y la estadística, como así también herramientas y estrategias que pueden usarse en la transposición didáctica. 3. Que el alumno aprenda manejo de software para usar en estadística. |
VI - Contenidos |
---|
TEMA 1: Probabilidad
Elementos de análisis combinatorio. Experimentos. Espacio muestral. Clasificación de experimentos: aleatorios y determinísticos, concretos y conceptuales. Muestra y Población. Eventos. Eventos simples, evento imposible, evento cierto. Realización de un evento. Familias de eventos. Familia de eventos admisibles. Álgebra de eventos y sigma álgebra de eventos. Propiedades. Distribución de probabilidad o función de probabilidad. Propiedades. Espacio de probabilidad. Distribución de probabilidad “a priori” o clásica o de igual probabilidad. Distribución de probabilidad “a posteriori” o frecuencial. Espacios de probabilidad con espacios muestrales finitos. Cálculo de probabilidades. Probabilidades condicionales. Interpretación frecuencial. Propiedades. Teorema de la probabilidad total. Fórmula de Bayes. Regla de multiplicación. Independencia de eventos. Contenidos de probabilidad que se enseñan en el secundario. Enfoques y estrategias para enseñar probabilidad. TEMA 2: Estadística Usos de la estadística. Quienes la usan. Significados de la palabra estadístico/a. Historia de la estadística. Información estadística: encuestas de opinión, publicidad. Razón, tasa y porcentaje. Variaciones relativas. Uso de cantidades o tasas para resumir información. La estadística en el método científico. Unidades muestrales. Variables. Población. Muestra. Muestra representativa. Muestreo. Muestreo aleatorio simple. Muestras malas. Sesgo: por selección de la muestra, de respuesta. Otros tipos de muestreo: sistemático, aleatorio estratificado, por conglomerados, multietápico. Variables numéricas y categóricas. Datos numéricos y categóricos. Gráficos para datos categóricos: circular, de barras. Origen de los datos: censos, encuestas, estudios observacionales y experimentales. Buenos y malos datos. Aspectos éticos. Elección del tipo de estudio. Estadísticos y parámetros. Variabilidad muestral: margen de error, errores debidos o no al muestreo aleatorio. Estudios experimentales. Estudios observacionales. Mediciones válidas. Números índices. Mediciones precisas y exactas. Variables numéricas: Histogramas de frecuencias y distribuciones de frecuencia. Variables discretas y continuas. Diagrama tallo-hoja. Distribución normal. Curvas de densidad. Simetría. Distribuciones con forma acampanada, uniformes. Medidas resumen. Promedios o medidas de centralización: media, mediana. Medidas de dispersión o variabilidad: rango, desvío estándar, distancia intercuartil. Gráfico de caja y brazos. Medidas resumen en curvas de densidad. Relación entre variables. Diagrama de dispersión. Coeficiente de correlación. Recta de regresión lineal simple. Relación entre variables categóricas. Distribución de muestreo de la media muestral. Teorema central del límite. Distribución de muestreo de la proporción muestral. Estimación por intervalo. Intervalo de confianza para la media, diferencia de medias, proporción, diferencia de proporciones. Pruebas de hipótesis. Valor p. Nivel de significación. Contenidos de estadística que se enseñan en el secundario. Enfoques y estrategias para enseñar estadística. |
VII - Plan de Trabajos Prácticos |
---|
Los prácticos consistirán en:
- La resolución y presentación escrita y oral de ejercicios - Exposición de temas de estadística y probabilidad |
VIII - Regimen de Aprobación |
---|
Para regularizar:
1. Participación activa y asistencia al 80% de las clases teóricas y de las clases prácticas. 2. Presentar en forma escrita, resueltos correctamente, todos los ejercicios que se asignen. 3. Cumplir con las exposiciones que se asignen. 4. Aprobar con una calificación no inferior a 6 (seis) dos exámenes parciales (o su recuperación) de carácter teórico−práctico. Para promocionar: Los alumnos que hayan regularizado la materia cumpliendo las condiciones antes mencionadas, para promocionar deberán además elaborar y defender un trabajo con una propuesta didáctica para enseñar algún tema de probabilidad y/o estadística destinado a alumnos de secundaria. En la defensa deberá contestar adecuadamente a preguntas relacionadas con el trabajo presentado. Para la aprobación de este trabajo deberá obtener una calificación no inferior a 7 (siete). La nota final para la promoción sin examen final surgirá del promedio entre la nota obtenida en este trabajo y los parciales. Examen final: Alumnos regulares. Deberán elaborar y defender un trabajo con una propuesta didáctica para enseñar algún tema de probabilidad y/o estadística destinado a alumnos de secundaria. En la defensa deberá contestar adecuadamente a preguntas relacionadas con el trabajo presentado y además en relación a los temas del programa. Alumnos libres. Deben rendir un examen escrito de carácter práctico sobre los temas del programa. De aprobarlo rendirá un examen en las mismas condiciones que un alumno regular. |
IX - Bibliografía Básica |
---|
[1] J. C. Cesco, Apuntes de Probabilidad, 1991.
[2] D. M. Kelmansky, Estadística para todos, Ministerio de Educación de la Nación. Instituto Nacional de Educación Técnica, 2009. [3] Núcleos de Aprendizaje Prioritarios, 3er. Ciclo/Nivel Medio (7°, 8° y 9° años). Consejo Federal de Cultura y Educación. Ministerio de Educación, Ciencia y Tecnología. Presidencia de la Nación. Buenos Aires, Argentina, 2006. [4] Contenidos Básicos Comunes para la Educación Polimodal (Matemática). Consejo Federal de Cultura y Educación. Ministerio de Cultura y Educación. Presidencia de la Nación. Buenos Aires, Argentina, 1997. |
X - Bibliografia Complementaria |
---|
[1] M. Spiegel, Estadistica, Serie Schum, 2da. Edición, MacGrawHill, 1991.
[2] Mendenhall, R. Beaver, R. y Beaver, B., Introducción a la probabilidad y estadística, Internacional Thompson Ed., 2002. [3] H. Cramer, Elementos de la teoría de probabilidades y algunas de sus aplicaciones, Aguilar, 1972. [4] A First Course in Probability, S. Ross, Macmillan Publishers, 1988. [5] Batanero, C. Los retos de la cultura estadística. Jornadas Interamericanas de Enseñanza de la Estadística, Buenos Aires. Conferencia inaugural. 2002. [6] C. Batanero, ¿Hacia dónde va la educación estadística?, Blaix, 15, 2-13. 2000. [7] C. Batanero, C. Díaz, El papel de los proyectos en la enseñanza y aprendizaje de la estadística, en J. Patricio Royo (Ed.), Aspectos didácticos de las matemáticas, 125164. Zaragoza: ICE. 2004. [8] L. Santaló, Las probabilidades en la educación secundaria, en Enseñanza de las Matemáticas en la Educación Secundaria, RialpMadrid. 1995. [9] L. Gysin, La enseñanza de la noción de probabilidad, en Estrategias de enseñanza de la matemática. Licenciatura en Educación. Universidad Nacional de Quilmes. 2000. [10] G. Chemello, G. Fernández, L. Gysisn. La enseñanza de la probabilidad y la geometría. Revista de Educación Matemática  Una mirada numérica. AZ Editora, 1997. [11] Página web del Grupo de Investigaciones en Probabilidad y Estadística. Universidad de Granada. España. http://www.ugr.es/~batanero/ [12] • Batanero, C., Estepa, A. y Godino, J. D.. Análisis exploratorio de datos: sus posibilidades en la enseñanza secundaria. Suma, 9, 25-31. 1991. |
XI - Resumen de Objetivos |
---|
Teniendo como marco los objetivos, fundamentos y perfil profesional de los Profesorados de Matemática se busca: 1. Estudiar algunos conceptos que complementen los contenidos de la asignatura Probabilidad y Estadística que se cursa previamente, y que son relevantes para los alumnos de los profesorados en Matemática. 2. Que el alumno conozca características del proceso de enseñanzaaprendizaje de la probabilidad y la estadística, como así también herramientas y estrategias que pueden usarse en la transposición didáctica. 3. Que el alumno aprenda manejo de software para usar en estadística. |
XII - Resumen del Programa |
---|
TEMA 1: Probabilidad
Elementos de análisis combinatorio. Experimentos. Espacio muestral. Muestra y Población. Eventos. Familias de eventos. Distribución de probabilidad o función de probabilidad. Espacio de probabilidad. Distribución de probabilidad “a priori” o clásica o de igual probabilidad. Distribución de probabilidad “a posteriori” o frecuencial. Espacios de probabilidad con espacios muestrales finitos. Cálculo de probabilidades. Probabilidades condicionales. Interpretación frecuencial. Teorema de la probabilidad total. Fórmula de Bayes. Regla de multiplicación. Independencia de eventos. Contenidos de probabilidad que se enseñan en el secundario. Enfoques y estrategias para enseñar probabilidad. TEMA 2: Estadística Historia de la estadística. Usos de la estadística. La estadística en el método científico. Información estadística. Razón, tasa y porcentaje. Unidades muestrales. Variables. Población. Muestra. Datos. Gráficos para datos. Estadísticos y parámetros. Variabilidad muestral. Estudios experimentales y observacionales. Mediciones. Distribución normal. Curvas de densidad. Distribuciones con forma acampanada, uniformes. Medidas resumen. Relación entre variables. Distribución de muestreo de la media muestral. Teorema central del límite. Distribución de muestreo de la proporción muestral. Estimación por intervalo. Pruebas de hipótesis. Contenidos de estadística que se enseñan en el secundario. Enfoques y estrategias para enseñar estadística. |
XIII - Imprevistos |
---|
|
XIV - Otros |
---|
|