

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería

(Programa del año 2009) (Programa en trámite de aprobación) (Presentado el 16/09/2009 09:53:16)

Area: Tecnología

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
Mecánica Básica	Téc. Univ. en D. Mec. Or. I		2009	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
BERSIA, NORBERTO DANIEL	Prof. Responsable	A.1ra Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
0 Hs	3 Hs	3 Hs	0 Hs	6 Hs

Tipificación	Periodo
C - Teoria con prácticas de aula	1° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
09/03/2009	19/06/2009	6	90

IV - Fundamentación

El curso tiende a brindar los conocimientos teóricos clásicos de la estática para posteriormente conocer los principales temas de resistencia de materiales, el entendimiento de los fundamentos teóricos permitirá al alumno abordar la resolución de problemas concretos.

V - Objetivos / Resultados de Aprendizaje

- Que los alumnos comprendan los conceptos básicos de la estática y la resistencia de materiales
- Que los conocimientos adquiridos permita al alumno analizar en forma lógica y sencilla la interpretación y resolución de aplicaciones prácticas.
- Familiarizar al alumno con situaciones existentes en la realidad donde la resolución de los mismos se basan en la aplicación de los conceptos adquiridos en la resolución problemas de aplicaciones prácticas Que mediante el análisis e interpretación de situaciones que se dan.

VI - Contenidos

Unidad 1. Sistemas Equivalentes de Fuerzas

- 1.1 Introducción. Fuerzas internas y externas. Principio de transmisibilidad. Fuerzas equivalentes.
- 1.2 Momento de una fuerza respecto a un punto. Teorema de Varignon. Momento de un par. Descomposición de una fuerza en una fuerza y un par. Reducción de un sistema de fuerzas en una fuerza y un par.

Unidad 2. Equilibrio

- 2.1 Introducción. Diagrama de cuerpo libre.
- 2.2 Reacciones en los puntos de apoyo.

- 2.3 Equilibrio de un cuerpo rígido en dos dimensiones y en tres dimensiones.
- 2.4 Reacciones estáticamente indeterminadas. Reacciones parciales.

Unidad 3. Centros de Gravedad

- 3.1 Introducción
- 3.2 Centros de gravedad de un cuerpo bidimensional

Unidad 4. Momentos de Inercia

- 4.1 Introducción. Momentos de inercia de áreas
- 4.2 Momento de inercia polar. Radio de giro.
- 4.3 Teorema de los ejes paralelos
- 4.4 Momento de inercia de áreas compuestas

Unidad 5. Fuerzas en Vigas

- 5.1 Introducción. Diferentes cargas y apoyos
- 5.2 Fuerza cortante y momento flector
- 5.3 Diagramas característicos
- 5.4 Relación entre carga, fuerza cortante y momento flector
- 5.5 Pórticos

Unidad 6. Pandeo

- 6.1 Introducción. Equilibrio estable, inestable e indiferente
- 6.2 Pandeo en el campo elástico, columna de Euler
- 6.3 Distintas formas de sustentación

Unidad 7. Fundamentos de Elasticidad

- 7.1 Introducción. Conceptos de tensión.
- 7.2 Estado plano de tensiones. Concepto de deformación
- 7.3 Ley de Hooke
- 7.4 Tensión limite, tensión admisible y coeficiente de seguridad
- 7.5 Hipótesis de falla
- 7.6 Esfuerzo Axial

Unidad 8. Flexión y Corte

- 8.1 Introducción.
- 8.2 Flexión pura
- 8.3 Modulo resistente
- 8.4 Teoría de cortadura
- 8.5 Perfiles de acero

Unidad 9. Torsión

- 9.1 Introducción. Teoría de torsión
- 9.2 Sección circular de varios materiales. Sección circular hueca

Unidad 10. Circulo de Mohr

- 10.1 Estado de esfuerzo en un punto
- 10.2Direcciones principales y esfuerzos principales
- 10.3 Circulo de Mohr

VII - Plan de Trabajos Prácticos

El desarrollo de los trabajos prácticos consiste en la resolución de seis guías de trabajos prácticos

Trabajo Práctico N 1: Equilibrio

Trabajo Práctico N 2: Centros de gravedad y momentos de inercia

Trabajo Práctico N 3:Fuerzas en vigas (diagramas característicos)

Trabajo Práctico N 4: Esfuerzo axil

Trabajo Práctico N 5: Flexión y corte

Trabajo Práctico N 6: Torsión

VIII - Regimen de Aprobación

Régimen de Regularidad:

Sólo podrán acceder a este régimen los alumnos que cumplan con las condiciones requeridas para cursar la asignatura que estipula el régimen de correlatividades vigentes en el plan de estudios de la carrera y se encuentren debidamente inscriptos en este curso.

Condiciones para promocionar la asignatura sin examen final

- Asistencia al 80% de las actividades prácticas.
- Aprobación del 100% de las evaluaciones parciales teórico-prácticas o sus recuperaciones, con un mínimo de 7 (siete) puntos.
- Presentar y aprobar las guías de trabajos prácticos

Condición para regularizar la asignatura con examen final:

- Asistencia al 80% de las actividades prácticas
- Aprobar las evaluaciones parciales con 4 (cuatro) puntos o mas
- Presentar y aprobar las guías de trabajos prácticos

Programa Para El Examen Final

El último programa aprobado.

IX - Bibliografía Básica

- [1] 1- Estática Merian
- [2] 2- Mecánica vectorial para ingenieros Beer, Ferdinand Johnston, E. Rusell
- [3] 3- Mecánica de materiales Beer, Ferdinand P. Johnston, E. Russell

X - Bibliografia Complementaria

XI - Resumen de Objetivos

- Que los alumnos comprendan los conceptos básicos de la Estática y la Resistencia de Materiales.
- Despertar el interés del alumno mediante la resolución de problemas palpables en la realidad

XII - Resumen del Programa

.- El programa abarca los conceptos teóricos básicos de estática y resistencia de materiales complementado con aplicaciones prácticas concretas.

XIII - Imprevistos

No se prevén imprevistos

XIV - Office	XIV	7 _ (Otros		
--------------	-----	-------	-------	--	--

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		