

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería

(Programa del año 2009) (Programa en trámite de aprobación) (Presentado el 07/08/2009 10:20:45)

Area: Mecánica

I - Oferta Académica

Materia	Carrera	Plan Año	Período
Automatización Industrial I	Ingeniería Electrónica	2009	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación	
CUELLO, JOSE ALBERTO	Prof. Responsable	P.Adj Exc	40 Hs	
OVIEDO, DOMINGO DARIO	Responsable de Práctico	A.1ra Simp	10 Hs	

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc.		Total		
0 Hs	1 Hs	2 Hs	2 Hs	5 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
10/03/2009	25/06/2009	15	75

IV - Fundamentación

El tema de automatización nos da una visión de lo que puede ayudar a una empresa en las actividades industriales para reducir la mano de obra, simplificar el trabajo y que son propiedad de algunas maquinas, realizar las operaciones de manera automática; por lo que indica que se va dar un proceso más rápido y eficiente.

Una mayor eficiencia en el sector de maquinaria, lograra que la empresa industrial disminuya la producción de piezas defectuosas, y por lo tanto aumente una mayor calidad en los productos que se logran mediante la exactitud de las maquinas automatizadas; todo esto ayudara a que la empresa industrial mediante la utilización de inversiones tecnológicas aumente toda su competitividad en un porcentaje considerable con respecto a toda su competencia, y si no se hace, la empresa puede sufrir el riesgo de quedarse rezagado.

Grado de automatización:

Según la importancia de la automatización, se distinguen los siguientes grados:

Aplicaciones en pequeña escala como mejorar el funcionamiento de una maquina en orden a:

Mayor utilización de una máquina, mejorando del sistema de alimentación.

Posibilidad de que un hombre trabaje con más de una máquina.

Coordinar o controlar una serie de operaciones y una serie de magnitudes simultáneamente.

Realizar procesos totalmente continuos por medio de secuencias programadas.

Procesos automáticos en cadena errada con posibilidad de autocontrol y autocorrección de desviaciones.

V - Objetivos / Resultados de Aprendizaje

Objetivos Generales:

- 1) Que el alumno aprenda a diseñar circuitos de control automático.
- 2) Que el alumno aprenda a programar equipos y dispositivos usados para los sistemas de automatización industrial.
- 3) Que el alumno se inicie en la problemática de la automatización industrial y en los distintos campos de investigación de la misma.

Objetivos específicos:

Que el alumno adquiera los conocimientos básicos necesarios para poder utilizar: PLC's, sensores, aplicando programas específicos.

Que el alumno adquiera los conocimientos básicos de mandos neumáticos.

VI - Contenidos

1. Fundamentos del Control Automático

- 1.1. Introducción. Ejemplos de sistemas de control.
- 1.2. Clasificación: Sistemas de lazo abierto (la), Sistemas de lazo cerrado (lc).
- 1.3. Clasificación de control: Manual, Automático, Semiautomático.
- 1.4. Modelos matemáticos. Diagramas en bloques.
- 1.5. Ejemplos de problemas y soluciones.

2. Controladores Lógicos Programables.

- 2.1. Descripción del funcionamiento de los PLC.
- 2.2. Manejo del Software de programación.
- 2.3. Programación con lenguaje no informático.
- 2.4. Simuladores de PLC.
- 2.5. Aplicaciones.

3. Sensores

- 3.1. Detectores electromecánicos
- 3.2. Detectores electrónicos
- 3.3. Detectores de proximidad (inductivos y capacitivos)
- 3.4. Sensores fotoeléctricos
- 3.5. Sensores ultrasónicos

4. Concepto de Fabricación Flexible

- 4.1. Introducción
- 4.2. Antecedentes históricos
- 4.3. Nuevos planteamientos de la política de producción
- 4.4. La fábrica flexible
- 4.5. SFF. Pasado, presente y futuro.

5. Sistema de Fabricación Flexible

- 5.1. Que es un sistema de fabricación flexible
- 5.2. Configuraciones de los sistemas de fabricación flexible (SFF)
- 5.3. Características Generales de los SFF
- 5.4. Componentes de un SFF
- 5.5. Control de un SFF

6. Introducción a la neumática.

- 6.1. Automatización neumática
- 6.2. Neumática industrial

6.3. Conceptos básicos:

- 6.3.1. Compresores secadores tuberías
- 6.3.2. Filtros reguladores
- 6.4. Actuadotes Neumáticos simbología.
- 6.5. Funcionamiento y aplicación de:
- 6.5.1. Válvulas
- 6.5.2. Electroválvulas.
- 6.5.3. Sensores
- 6.6. Circuitos de aplicación.
- 6.6.1. Mando automático discreto.
- 6.6.2. Lógica simple de relés.
- 6.6.3. Diseño y puesta en marcha de circuitos electroneumáticos básicos
- 6.7. Trabajos prácticos Pruebas en Tablero Didáctico.

VII - Plan de Trabajos Prácticos

Unidad Nº 1

Resolver problemas típicos.

Unidad Nº 2

Resolución de problemas típicos de PLC.

Aplicaciones sobre el S7300.

Unidad N° 3

Utilización de sensores de distintos tipos.

Unidad Nº 4 y 5

Realización de una monografía sobre temas de la Fabricación Flexible acordados con el equipo docente.

Unidad Nº 6

Resolución de problemas de mandos automáticos con neumática

Ejercicio de Aplicaciones en tablero didáctico FESTO.

VIII - Regimen de Aprobación

RÉGIMEN DE PROMOCIÓN SIN EXAMEN FINAL

Asistencia al 80 % de las clases teóricas.

Aprobación del 100% de los trabajos prácticos con mínimo 7 puntos.

Aprobación dos parciales teórico-prácticos escrito o de la recuperación con mínimo 7 puntos.

Aprobación de la actividad final integradora.

RÉGIMEN DE PROMOCIÓN CON EXAMEN FINAL

Asistencia al 70 % de las clases teóricas.

Aprobación del 100% de los trabajos prácticos con mínimo 4 puntos.

Aprobación de dos parciales teórico-prácticos escrito o de la recuperación con mínimo 4 puntos.

PROGRAMA PARA EL EXAMEN FINAL

Para la aprobación final de la materia los alumnos deben presentar y defender un proyecto final que involucre trabajos de experimentación y desarrollo, en acuerdo con los docentes de la asignatura.

En el examen final estos alumnos pueden ser interrogados sobre los contenidos teóricos del programa completo.

ALUMNOS LIBRES

Para la aprobación como alumno libre, se debe presentar y defender un proyecto final que involucre trabajos de experimentación y desarrollo, en acuerdo con los docentes de la asignatura.

Examen oral de los contenidos teóricos del último programa aprobado.

IX - Bibliografía Básica

- [1] Libros Guías:
- [2] J. Pedro Romera, J. Lorite, Sebastián Montoso (1994) Automatización: Problemas resueltos con autómatas programables.
- [3] Ed. Parafino SA..
- [4] U. Rembold, B.O. Nnaji, A. Storr (1993). Computer Integrated Manufacturing and Engineering. Ed. Addison-Wesley.
- [5] Ramón Pallás Areny (1994). Sensores y Acondicionadores de Señales. Ed. Marcombo.

X - Bibliografia Complementaria

- [1] Kusiac, Andrew. (1990). Intelligent Manufacturing Systems.
- [2] Ed. Prentice Hall.
- [3] Rafael Ferré Masip. (1988). La Fábrica Flexible.
- [4] Ed. Marcombo
- [5] K. Ogata. (1993). Ingeniería de Control Moderno.
- [6] Ed. Prentice Hall.
- [7] K.S. Fu, R.C. González, C.S.G. Lee, (1988). Robótica : Control, Detección, Visión e Inteligencia. Ed. McGraw Hill.
- [8] Publicaciones y apuntes varios.

XI - Resumen de Objetivos

- 1) Que el alumno aprenda a diseñar circuitos de control automático.
- 2) Que el alumno aprenda a programar equipos y dispositivos usados para los sistemas de automatización industrial.
- 3) Que el alumno se inicie en la problemática de la automatización industrial y en los distintos campos de investigación de la misma.

XII - Resumen del Programa

- 1. Fundamentos del Control Automático
- 1.1. Introducción. Ejemplos de sistemas de control.
- 1.2. Clasificación: Sistemas de lazo abierto (la), Sistemas de lazo cerrado (lc).
- 1.3. Clasificación de control: Manual, Automático, Semiautomático.
- 1.4. Modelos matemáticos. Diagramas en bloques.
- 1.5. Ejemplos de problemas y soluciones.
- 2. Controladores Lógicos Programables.
- 2.1. Descripción del funcionamiento de los PLC.
- 2.2. Manejo del Software Microwin 32.
- 2.3. Programación ladder del PLC S7200.
- 2.4. Simulador del S7200.
- 2.5. Aplicaciones.
- 3. Sensores
- 3.1. Detectores electromecánicos
- 3.2. Detectores electrónicos
- 3.3. Detectores de proximidad (inductivos y capacitivos)
- 3.4. Sensores fotoeléctricos
- 3.5. Sensores ultrasónicos
- 4. Concepto de Fabricación Flexible
- 4.1. Introducción
- 4.2. Antecedentes históricos
- 4.3. Nuevos planteamientos de la política de producción

4.4. La fábrica flexible			
4.5. SFF. Pasado, presente y futuro.			
5. Sistema de Fabricación Flexible			
5.1. Que es un sistema de fabricación flexible			
5.2. Configuraciones de los sistemas de fabricación flexible (SFF)			
5.3. Características Generales de los SFF			
5.4. Componentes de un SFF			
5.5. Control de un SFF			
6. Introducción a la neumática.			
6.1. Automatización neumática			
6.2. Neumática industrial			
6.3. Conceptos básicos:			
Compresores – secadores – tuberías - Filtros – reguladores			
6.4. Actuadotes Neumáticos – simbología.			

XIII - Imprevistos

6.6. Circuitos de aplicación.

6.5. Funcionamiento y aplicación de: Válvulas - Electroválvulas - Sensores

6.7. Trabajos prácticos – Pruebas en Tablero Didáctico.

El régimen de promoción puede verse afectado por posibles paros en las actividades docentes

XIV - Otros			

Mando automático discreto - Lógica simple de relés - Diseño y puesta en marcha de circuitos electroneumáticos básicos

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		