

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Quimica Area: Qca Analitica

(Programa del año 2024) (Programa en trámite de aprobación) (Presentado el 02/07/2024 10:20:25)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
QUÍMICA ANALÍTICA II	PROF. UNIVERSITARIO EN	14/19	2024	1° cuatrimestre
	QUÍMICA	-CD	2024	

II - Equipo Docente

Docente	Función	Cargo	Dedicación
FERNANDEZ, LILIANA PATRICIA	Prof. Responsable	P.Tit. Exc	40 Hs
KAPLAN, MARCOS MANUEL	Prof. Colaborador	P.Adj Exc	40 Hs
STEGE, PATRICIA WANDA	Prof. Colaborador	P.Asoc Exc	40 Hs
MARIÑO REPIZO, LEONARDO	Responsable de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/		Práct. de lab/ camp/ Resid/ PIP, etc.	Total	
4 Hs	Hs	Hs	2 Hs	6 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
11/03/2024	21/06/2024	15	90

IV - Fundamentación

Este curso de Química Analítica II se basa en los fundamentos de las distintas metodologías instrumentales de análisis utilizadas para la separación, identificación y cuantificación de un analito en una determinada muestra. Se pretende dar una visión amplia de las distintas técnicas estableciendo también las relaciones (similitudes y diferencias) que existen entre ellas. El contenido teórico y práctico es desarrollado con la suficiente profundidad para que el estudiante cuente con los conocimientos necesarios para aplicar metodologías analíticas. Se pretende obtener un tratamiento comprensivo y coherente de los aspectos fundamentales y las aplicaciones prácticas de los métodos instrumentales.

V - Objetivos / Resultados de Aprendizaje

- Conocer los principios básicos, características de funcionamiento y principales aplicaciones del análisis instrumental.
- Conocer e interpretar las propiedades analíticas que definen las características de interés de los métodos instrumentales.
- Conocer y manejar en el laboratorio la instrumentación analítica utilizada.
- Interpretar, explicar y expresar correctamente las experiencias desarrolladas en el laboratorio en base a los conocimientos teóricos adquiridos y a través de la consulta bibliográfica.
- Saber interpretar la calidad de los resultados.
- Lograr con la experiencia una apertura de criterios para seleccionar la técnica analítica que deberá emplear en ciertos casos.

VI - Contenidos

Bolilla 1

Los métodos instrumentales y su importancia en el análisis químico y biológico. Generalidades. Tipos de métodos instrumentales. Generadores de señales, detectores, dispositivos de lectura, circuitos auxiliares. Parámetros de calidad de las medidas instrumentales. Curvas de calibrado. Relación entre señal y ruido instrumental. Aumento de la relación señal y ruido. Evaluación estadística de datos analíticos.

PARTE A: Métodos físico-químicos de análisis

Bolilla 2

Propiedades de la radiación electromagnética. Propiedad ondulatoria. Interacción de la radiación con la materia. Absorciometría: teoría. Ley de Lambert-Beer. Desviación de la Ley de Beer. Errores. Aplicaciones. Espectrometría en UV-Visible. Instrumentación. Fuentes de error y precauciones operacionales. Aplicaciones en análisis químico.

Bolilla 3

Fluorescencia y fosforescencia molecular: teoría. Variables que afectan a la fluorescencia y a la fosforescencia. Medición de fluorescencia. Instrumentos. Fluorímetros y espectrofluorímetros. Aplicaciones.

Refractometría: Principios generales. Índice de refracción. Instrumentos. Aplicaciones.

Polarimetría: Principios generales. Refracción doble. Compuestos ópticamente activos. Variables que afectan la rotación óptica. Polarímetros. Aplicaciones.

Bolilla 4

Espectrometría de llama y Absorción Atómica: Introducción. Espectros de absorción y de emisión. Instrumentación: Fuentes de radiación, atomizadores con y sin llama, monocromadores, modulación de la señal, detector y sistemas de lectura y registro. Sensibilidad y límite de detección. Interferencias: clasificación y modos de eliminación. Modos de evaluación directo, agregado patrón y patrón interno. Aplicaciones analíticas.

Espectrometría de Emisión Óptica asociada al Plasma acoplado Inductivamente (ICP-AES). Introducción. Principios y mecanismos. Instrumentación. Aplicaciones.

Bolilla 5

Métodos Electroanáliticos. Definición de celda electroquímica. Celdas galvánicas y electrolíticas. Potenciales de celdas.Potencial estándar de electrodo. Ecuación de Nernst. Tipos de electrodos: Electrodos de referencia. Electrodos indicadores. Electrodos de membranas.

Métodos electroanalíticos. Clasificación: Potenciométricos: Potenciometrias directa. Titulaciones potenciométricas. Conductimetrías. Medidas de conductividad y titulaciones conductimetricas. Voltametrías: Polarografia. Aplicaciones

PARTE B: Técnicas Separativas

Bolilla 6

Importancia de las separaciones en el campo analítico. Generalidades. Extracción líquido-líquido: aspectos termodinámicos y cinéticos. Equilibrios de distribución: Volúmenes de las fases y Extracciones sucesivas. Relación de distribución. Influencia del pH en la extracción. Factor de recuperación y selectividad de la extracción. Extracción de quelatos metálicos y pares iónicos. Aplicaciones analíticas y biológicas.

Ultracentrifugación Ultracentrifugación analítica y preparativa. Aplicaciones de la ultracentrifugación preparativa para muestras biológicas. Ultracentrifugación diferencial. Obtención de fracciones subcelulares.

Bolilla 7

Cromatografía: definiciones y clasificación. Descripción general del proceso cromatográfico. Conceptos. Migración diferencial y ecuación de Van Deemter. Cromatografía líquida. Cromatografía Líquida de Alta Performance (HPLC). Instrumentación: Bomba, Inyectores, Columnas y Detectores. Modalidades de HPLC. Teoría. Mecanismos de retención de cromatografía de adsorción, con fases químicamente ligadas, de intercambio iónico, de filtración por geles. Cromatografía de gases: generalidades. Cromatografía gas-líquido. Instrumentación. Sistema de muestreo, columnas empaquetadas, capilares y

tipos de fases estacionarias. Sistema de detección. Cromatografía en placa fina. Generalidades. Análisis cualitativo y cuantitativo por cromatografía. Aplicaciones.

Bolilla 8

Electroforesis. Fundamentos teóricos. Modalidades. Electroforesis libre y sobre soporte. Electroforesis sobre soporte. Factores que influyen en la migración electroforética. Factores inherentes a las partículas. Factores inherentes al medio. Instrumentación. Procedimiento para realizar una electroforesis convencional sobre soporte. Aplicaciones Electroforesis capilar. Fundamento. Características. Instrumentación: Tipo de detectores. Sistema de registro y análisis de señal: electroferograma. Introducción de la muestra. Principios de separación. Flujo Electroendosmótico. Flujo electroforético. Separación de analitos. Modos de operación. Modos electroforéticos: Electroforesis Capilar de zona y otros modos electroforéticos. Aplicaciones

Bolilla 9

Intercambio iónico: Introducción. Generalidades. Resinas cambiadoras. Propiedades generales. Capacidad. Cambiadores inorgánicos y orgánicos. Equilibrio del intercambio iónico. Coeficiente de selectividad. Cinética del intercambio iónico. Aplicaciones: purificación de disolventes y reactivos. Separación de interferencias. Concentración de vestigios.

PARTE C: Misceláneos

Bolilla 10

Métodos radioquímicos: Concepto e importancia. Procesos de desintegración radiactiva. Instrumentación. Detectores de radiación. Análisis de activación de neutrones. Métodos de dilución isotópica. Principios. Aplicaciones.

Bolilla 11

Métodos automatizados de análisis. Generalidades del instrumental automático y de la automatización. Análisis por inyección en flujo. Sistemas automáticos discontinuos. Separaciones contínuas no-cromatográficas. Sistema líquido-líquido: Diálisis. Aplicaciones.

VII - Plan de Trabajos Prácticos

TRABAJOS PRACTICOS DE LABORATORIO

- 1)-Absorciometría espectrofotométrica I: Trazado de la curva espectral
- 2)-Absorciometría espectrofotométrica II: Trazado de la curva de calibración. Aplicaciones.
- 3)-Fluorescencia molecular. Trazado de espectros de excitación y de emisión. Trazado de la curva de calibración. Aplicaciones.
- 4)-Absorción atómica: Determinación de iones metálicos en muestras de interés.
- 5)-Espectrometría de llama: Determinación de sodio y potasio en muestras de interés.
- 6)-Potenciometría. Potenciometría directa: medida de pH. Titulación Potenciométrica. Aplicaciones.
- 7)-Cromatografía líquida de alta performance: Aplicaciones analíticas.
- 8)-Electroforesis. Aplicaciones analíticas.

Prácticos de Aula

Problemas de aplicación de cada una de las temáticas desarrolladas.

NORMAS GENERALES DE HIGIENE Y SEGURIDAD

Usar guardapolvo con puños, entallados y a la altura de la rodilla, de preferencia de algodón.

Usar protección para los ojos tales como lentes de seguridad y guantes apropiados.

No se permitirá la entrada al laboratorio con: faldas, pantalones cortos, medias de nylon, zapatos abiertos y cabello largo suelto.

No comer, beber, ni fumar en los lugares de trabajo.

Mantener las mesas siempre limpias y libres de materiales extraños (traer repasador).

Colocar materiales peligrosos alejados de los bordes de las mesas.

Arrojar material roto sólo en recipientes destinados a tal fin.

Limpiar inmediatamente cualquier derrame de producto químico.

Mantener sin obstáculo las zonas de circulación y de acceso a las salidas y equipos de emergencia.

Informar en forma inmediata cualquier incidente al responsable de laboratorio.

Antes de retirarse del laboratorio deben lavarse las manos.

NORMAS PARTICULARES

Para tomar material caliente usar guantes y pinzas de tamaño y material adecuados.

Colocar los residuos, remanentes de muestras, etc. en recipientes especialmente destinados para tal fin.

Rotular los recipientes, aunque sólo se utilicen en forma temporal.

No pipetear con la boca ácidos, álcalis o productos corrosivos o tóxicos.

MANEJO DE SOLVENTES, ACIDOS Y BASES FUERTES

Abrir las botellas con cuidado y de ser posible, dentro de una campana.

Los ácidos y bases fuertes deben almacenarse en envases de vidrio perfectamente tapados y rotulados, lejos de los bordes desde donde puedan caer.

No apoyar las pipetas usadas en las mesas.

No exponer los recipientes al calor.

Trabajar siempre con guantes y protección visual.

Para la dilución de ácidos añadir lentamente el ácido al agua contenida en el matraz, agitando constantemente y enfriando si es necesario.

Antes de verter ácido en un envase, asegurarse de que no esté dañado.

Si se manejan grandes cantidades de ácidos tener a mano bicarbonato de sodio.

Si le cae por accidente sobre piel un solvente, ácido o álcali, inmediatamente lávese con abundante agua y busque atención.

VIII - Regimen de Aprobación

La asignatura se desarrolla con clases teóricas, trabajos prácticos de laboratorio y trabajos prácticos de aula.

Sistemas y criterios de evaluación

Regularidad de la Asignatura

Para obtener la regularidad de la asignatura se deberá aprobar el 100% de las prácticas de laboratorio y parciales.

- -Las clases prácticas de laboratorio serán evaluadas mediante un cuestionario escrito y una evaluación continua, en la que se dará especial importancia a los resultados obtenidos, así como a la elaboración de un informe escrito, incluyendo una breve introducción, objetivos, resultados y conclusiones.
- Se realizarán tres exámenes parciales con las temáticas desarrolladas en los prácticos de laboratorio y de aula, contando con dos instancias de recuperación por cada parcial (ORDENANZA CS. 32/14).

La asignatura se apoya sobre una serie de fundamentos previos, conceptos fisicoquímicos y detalles tanto de los elementos constitutivos de los instrumentos como de su funcionamiento que hace imprescindible una actitud muy activa por parte del alumno. Por ello la asistencia regular a las clases teóricas como otras actividades es extremadamente importante.

Aprobación de la Asignatura

Por Promoción

Los esttuiantes en condiciones de promocionar la asignatura deberán:

Asistir a las clases teóricas obligatorias entre el 100-80 %. Deberán aprobar al menos dos de los tres parciales regulares en primera instancia.

Deberán aprobar 2 parciales de promoción integradores de teoría teniendo la posibilidad de una recuperación.

Por examen final

Los estudiantes regulares serán evaluados mediante un examen final de modalidad oral, logrando la aprobación de la asignatura con una calificación mínima cuantitativa de cuatro (4) puntos (Art.31 Ord 13/03 CS). Esta evaluación permitirá

apreciar de manera completa el dominio alcanzado por el alumno sobre la totalidad de los contenidos del curso y las competencias necesarias para su futuro desempeño.

Dadas las características del curso y considerando que la realización de la parte experimental resulta esencial para la formación de los estudiantes, se podrá rendir en condición de alumno libre si el alumno realiza y aprueba los trabajos prácticos de laboratorios y problemas que el Profesor Responsable estime conveniente.

IX - Bibliografía Básica

- [1] D. Skoog, A. Douglas, F. Holler, F. James, Crouch, Principio del Análisis Instrumental 6ª Ed. Cencage Learning, 2011.
- [2] D. Skoog y J. Leary, "Análisis instrumental", Mac Graw Hill, 1996.
- [3] Skoog, Douglas A., Holler, F. James, Nieman, Timothy A., Martín Gómez, María del Carmen, Principios de análisis instrumental, 5ª ed. McGraw-Hill, 2003
- [4] Skoog, Douglas A., Soller, F. James, Crouch, Stanley R Principles of instrumental analysis 6^a ed. Thomson Brooks-Cole, 2007.
- [5] Satinder Ahuja, Neil Jespersen, Modern Instrumental Analysis, 47, ed. Elsevier, 2006.
- [6] Guía de estudio de la Asignatura. Versión 2023.

X - Bibliografia Complementaria

- [1] H. Seiler, A. Sigel, H. Sigel Eds., "Handbook on Metals in Clinical and Analytical Chemistry", Marcel Dekker, Inc., 1994.
- [2] R. Kellner, J. M. Mermet, M. Otto, H. M. Widmer Eds., "Analytical Chemistry", Wiley VCH, 1998.
- [3] Publicaciones periódicas de Química Analítica.

XI - Resumen de Objetivos

- Conocer los principios básicos, características de funcionamiento y principales aplicaciones del análisis instrumental.
- Saber interpretar la calidad de los resultados.
- Adquirir criterio para seleccionar la técnica analítica que deberá emplear en cada caso.

XII - Resumen del Programa

- 1)- Los Métodos Instrumentales. Generalidades.
- 2)-Propiedades de la radiación electromagnética. Interacción de la radiación con la materia. Absorciometría. Espectrometría en UV-Visible. Instrumentación. Aplicaciones.
- 3)- Fluorescencia y fosforescencia molecular: teoría. Instrumentos. Fluorímetros y espectrofluorímetros. Aplicaciones.

Refractometría. Instrumentos. Aplicaciones. Polarimetría. Principios generales. Polarímetros. Aplicaciones.

- 4)- Espectrometría de Llama, Absorción Atómica, ICP. Instrumentación. Sensibilidad y límite de detección. Interferencias. Aplicaciones.
- 5)- Métodos electroquímicos de análisis: Concepto e importancia. Celdas electroquímicas. Potenciometría. Conductimetría. Voltametría. Instrumentación. Aplicaciones
- 6)- Separaciones Cuantitativas. Generalidades Extracción. Extracción de quelatos. Concepto. Importancia. Aplicaciones. Ultracentrifugación. Aplicaciones.
- 7)- Cromatografía. Generalidades. Distintos tipos. Aplicaciones. Cromatografía gas-líquido. Teoría. Aplicaciones.

Cromatografía de Afinidad. Concepto. Aplicaciones. Cromatografía: definiciones y clasificación. Cromatografía Líquida de Alta Performance (HPLC). Instrumentación. Aplicaciones Cromatografía gas-líquido. Instrumentación. Aplicaciones.

Cromatografía en placa fina. Generalidades. Análisis cualitativo y cuantitativo por cromatografía. Aplicaciones.

- 8)- Electroforesis: . Aplicaciones. Electroforesis Capilar.Instrumentación y Aplicaciones.
- 9)- Intercambio iónico. Generalidades. Tipos de intercambiadores. Aplicaciones.
- 10)- Métodos radioquímicos. Generalidades. Equipamiento. Técnicas de evaluación. Aplicaciones.
- 11)- Métodos Automatizados de Análisis: Generalidades. Análisis por inyección en flujo. Separaciones continuas no-cromatográficas. Aplicaciones.

XIII - Imprevistos Se cuenta con material virtual para salvar situaciones de aislamiento que eventualmente surgieran.

	<u>. </u>	 	
XIV - Otros			

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA			
	Profesor Responsable		
Firma:			
Aclaración:			
Fecha:			