

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ciencias Básicas Area: Matemática

(Programa del año 2023)

I - Oferta Académica

Materia	Carrera	Plan Año Período
Algebra y Geometría Analítica	ING.EN ALIMENTOS	OCD
		N° 2023 2° cuatrimestre
		22/20 2023 2 cuatrinestre
		22

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ALIAGA, MARIA LAURA	Prof. Responsable	P.Adj Exc	40 Hs
ANDINO, GABRIELA BEATRIZ	Prof. Colaborador	P.Adj Exc	40 Hs
MENUET, AGUSTIN	Prof. Co-Responsable	P.Adj Exc	40 Hs
ALTAMIRANO, NICOLAS	Responsable de Práctico	JTP Exc	40 Hs
GARCIARENA UCELAY, JOSE MARTIN	Responsable de Práctico	JTP Exc	40 Hs
BORTOLUSSI, NOELIA BELEN	Auxiliar de Práctico	A.1ra Exc	40 Hs
UVIETA, FERNANDA CECILIA	Auxiliar de Práctico	A.1ra Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
2 Hs	3 Hs	4 Hs	Hs	9 Hs

Tipificación	Periodo
C - Teoria con prácticas de aula	2° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
07/08/2023	18/11/2023	15	135

IV - Fundamentación

Esta asignatura forma parte del ciclo básico de la carrera de ingeniería y asegura la formación conceptual para el sustento de las asignaturas del ciclo superior. De igual manera, aporta al perfil del/a ingeniero/a la capacidad de desarrollar el pensamiento lógico deductivo para resolver problemas junto con herramientas matemáticas para hacerlo. Se estudian vectores en el plano y el espacio, y se realiza un profundo análisis de las cónicas, trabajando en el tratamiento de las ecuaciones algebraicas como también en su conversión al registro gráfico. Todos estos contenidos serán la base para trabajar con áreas y volúmenes de funciones en Análisis 2, y para el desarrollo de los temas de álgebra lineal. El conocimiento del álgebra lineal es imprescindible para todo futuro/a ingeniero/a ya que resolver sistemas de ecuaciones lineales representa una de las aplicaciones más importantes en ámbitos científicos e industriales, y muchos problemas que se presentan en la ingeniería se pueden aproximar a un modelo lineal.

Una condición necesaria para el cursado de la asignatura es que los y las estudiantes tengan conocimiento de los contenidos de Análisis Matemático I.

Este programa pretende formar a futuros profesionales de la ingeniería en aspectos científicos y tecnológicos (en particular matemáticos), como así también promover el desarrollo de competencias interpersonales que consideren aspectos sociales, ambientales y culturales desde una perspectiva global, tomando en cuenta las necesidades de la sociedad en la que se insertarán.

V - Objetivos / Resultados de Aprendizaje

Resultados de Aprendizaje:

Desarrollar el pensamiento lógico deductivo para resolver problemas de álgebra lineal y geometría analítica aplicados a la ingeniería.

Desarrollar competencias interpersonales que contribuyan a la construcción de una ciudadanía global.

Reconocer las fórmulas generales que unifican la teoría general de las cónicas.

Interpretar el lugar geométrico en el plano para la resolución de problemas aplicados a geometría analítica utilizando registro algebraico.

Resolver sistemas de ecuaciones lineales conociendo e interpretando gráfica y analíticamente las soluciones de los mismos. Utilizar la teoría de determinantes y el cálculo matricial en el álgebra lineal en problemas concretos de ingeniería y de Álgebra Lineal.

Interpretar el concepto de transformación lineal, su geometría en R2 y en espacios vectoriales en general.

Calcular autovalores y autovectores para resolver problemas físicos y/o matemáticos y establecer conexiones con geometría analítica.

Al aprobar este curso, cada estudiante habrá obtenido las siguientes Competencias genéricas de Egreso:

- 1. Identificar, formular y resolver problemas de ingeniería,
- 2. Utilizar de manera efectiva las técnicas y herramientas de aplicación en la ingeniería,
- 3. Desempeñarse de manera efectiva en equipos de trabajo,
- 4. Comunicarse con efectividad, en contextos interculturales e internacionales
- 5. Aprender en forma continua y autónoma.

Así mismo, todas las actividades planteadas permiten desarrollar al futuro/a ingeniero/a la comunicación oral, escrita y la capacidad de síntesis, de la misma manera en la que permiten desarrollar competencias interpersonales que contribuyen a la construcción de un ciudadano/a global.

VI - Contenidos

UNIDAD I: VECTORES, RECTAS Y PLANOS

Vectores:

Descomposición canónica de un vector. Igualdad. Adición y sustracción de vectores.

Producto escalar. Definición y Propiedades. Paralelismo y ortogonalidad de vectores. Ángulo entre dos vectores. Cosenos directores.

Producto vectorial. Definición y Propiedades. Proyección.

Producto Mixto y volumen del paralelepípedo. Regla cíclica del producto mixto.

Rectas:

Distancia entre dos puntos.

División de un segmento en una razón dada.

Segmento rectilíneo dirigido.

Definición de recta. Definición de la ecuación de la recta a través de un punto y su pendiente. Definición de la ecuación de la recta a través de su pendiente y su ordenada al origen. Forma segmentaria de la recta.

Forma normal de la ecuación de la recta. Ecuación vectorial de la recta en el espacio. Interpretación gráfica.

Ecuaciones paramétricas de la recta. Segmento de recta. Ecuaciones simétricas de la recta.

Rectas perpendiculares y paralelas. Distancia de un punto a una recta. Forma general de la ecuación de la recta. Casos particulares de la forma general. Angulo entre dos rectas. Familia o haz de rectas por un punto

Planos:

Definición de plano. Ecuación vectorial del plano. Ecuación rectangular o cartesiana del plano. Ecuación normal

(punto-normal)

Planos perpendiculares y paralelos. Ecuación del plano que contiene a tres puntos. Posiciones relativas de planos. Intersección de un plano y una recta. Intersección de dos planos.

UNIDAD II: CÓNICAS, COORDENADAS POLARES Y ECUACIONES PARAMÉTRICAS.

Cónicas:

Circunferencias. Elipses. Parábolas. Hipérbolas. Definición, ecuación ordinaria, canónica, general y elementos que las componen. Recta tangente y normal a una cónica. Concepto de excentricidad y definición general – teoría unificada de cónica. Ecuación general de 2° Grado.

Coordenadas polares:

Sistema de coordenadas polares. Pasaje de coordenadas polares a rectangulares y viceversa. Trazado de curvas en coordenadas polares. Ecuación de las cónicas en coordenadas polares y estudio de distintas curvas.

Ecuaciones paramétricas:

Rectas, planos y cónicas. Eliminación del parámetro.

UNIDAD III: RAZONAMIENTO DEDUCTIVO Y SISTEMAS DE ECUACIONES LINEALES Y MATRICES

Razonamiento deductivo aplicado al álgebra:

Proposiciones. Conectivos lógicos. Operaciones proposicionales. Cuantificación. Condición necesaria y suficiente de una proposición. Leyes lógicas. Equivalencias lógicas. Métodos de demostración directo e indirecto.

Sistemas de Ecuaciones y Matrices:

Introducción a los sistemas de ecuaciones lineales. Dos ecuaciones con dos incógnitas. Sistemas de m ecuaciones con n incógnitas: Eliminación Gauss- Jordan y Gaussiana. Sistemas de ecuaciones lineales homogéneos.

Matrices y operaciones con matrices. Igualdad de matrices. Suma de matrices.

Definición de matriz simétrica, antisimétrica, adjunta, ortogonal, idempotente, hermitiana.

Multiplicación de matrices.

Multiplicación de un escalar por una matriz. Propiedades del álgebra de matrices. Matrices y sistemas de ecuaciones lineales. Inversa de una matriz cuadrada. Transpuesta de una matriz. Matrices Elementales y matrices Inversas.

UNIDAD IV: DETERMINANTES

Definición y ejemplos. Propiedades de la función determinante y su aplicación. Propiedad fundamental de determinantes y fórmula de la inversa. Regla de Cramer.

UNIDAD V: ESPACIOS VECTORIALES

Introducción a los espacios Vectoriales. Definiciones y propiedades básicas. Subespacios. Combinación lineal y espacio generado. Independencia lineal. Base y dimensión de un espacio vectorial. Rango, nulidad, espacio de los renglones y espacio de las columnas de una matriz. Teorema de Rouche-Fröbenius. Teorema de la dimensión y Cambio de base. Producto interior en espacios vectoriales. Forma axiomática. Matriz de Rotación, matriz ortogonal y Subespacios ortogonales. Bases ortonormales y proyección ortogonal en Rn. Proceso de ortonormalizacion de una base o teorema de Gram-Schmidt.

UNIDAD VI: TRANSFORMACIONES LINEALES

Definición y ejemplos. Efectos geométricos de las transformaciones lineales en R2. Propiedades de las transformaciones lineales: imagen y núcleo. Representación matricial de una transformación lineal.

UNIDAD VII: AUTOVALORES Y AUTOVECTORES

Autovalores y autovectores. Matrices Semejantes y diagonalización. Matrices simétricas y diagonalización ortogonal. Formas cuadráticas y secciones cónicas. Teorema de los ejes principales y aplicaciones en geometría analítica.

VII - Plan de Trabajos Prácticos

Trabajos Teórico-Prácticos de Aula

Para cada unidad se desarrollan guías de trabajos prácticos con actividades relacionadas al contenido de la misma. Todas estas actividades se trabajarán en clases, fomentando el aprendizaje colaborativo, en grupos de hasta 4 estudiantes y con la guía de los docentes quienes actuarán como tutores, pudiendo también resolver en la pizarra y analizar en forma grupal ejercicios "tipo".

Para que los estudiantes desarrollen el aprendizaje autónomo, el equipo docente ha creado un canal de YouTube con videos de toda la teoría, y ha elaborado Hojas de Ruta de cada unidad, donde se presenta un esquema del contenido teórico de la misma y videos seleccionados que permitan aprender, revisar o reforzar los contenidos dados. Así mismo, cuentan con los resultados de las actividades y guía de ejercicios resueltos paso a paso.

Para fomentar las competencias interculturales, se prevé que algunos prácticos o guías presenten enunciados en inglés, de modo que los estudiantes desarrollen la habilidad de leer y escribir en otro idioma. En esta misma línea, se trabajará con material bibliográfico en inglés.

En varias unidades se promueve el uso del software libre GeoGebra como complemento a las actividades prácticas planteadas, pudiendo visualizar algunos conceptos e interpretando o anticipando ciertas soluciones.

No se requiere la presentación de prácticos para su evaluación.

VIII - Regimen de Aprobación

A - METODOLOGÍA DE DICTADO DEL CURSO:

Como muchos de los contenidos del programa requieren de cierto nivel de abstracción, es necesario que el estudiante cuente con recursos que le permitan construir su aprendizaje, para que el mismo sea significativo. Entendiendo que para lograr esto no todos los estudiantes cuentan con los mismos conceptos previos, el equipo docente ha desarrollado videos del contenido teórico, disponibles en el canal de YouTube de la asignatura (*). La propuesta del curso es que cada estudiante pueda visualizarlo previo a la clase y que en los encuentros presenciales se trabaje sobre las dudas de la teoría que pudieran surgir, realizando síntesis y relaciones de los contenidos, y principalmente en las actividades prácticas (que consisten en la resolución de ejercicios y problemas de aplicación de los temas que se van desarrollando teóricamente), enmarcando esta propuesta en el modelo de clase invertida, centrado en el estudiante.

Entendiendo que el aprendizaje es una actividad recursiva, también se desarrollarán clases expositivas de algunos contenidos teóricos y sus relaciones, fomentando la participación de los estudiantes a través del intercambio grupal. Algunas de estas actividades se apoyarán en recursos tecnológicos que permitan una mejor comprensión.

Es crucial que los y las estudiantes dediquen un tiempo de trabajo individual a la lectura del material teórico, a la visualización de videos elaborados por el equipo docente, a la realización de ejercicios prácticos y llaves de entrada/salida, ya que estas actividades le permitirán construir el conocimiento de acuerdo a sus conceptos previos y habilidades personales (como son la organización del tiempo y el aprendizaje autónomo).

Instancias de evaluación: dadas las características de la propuesta, se prevé una evaluación continua por medio de Llaves de entrada/salida (cuestionarios de opción múltiple que permitan a los docentes visualizar los procesos de aprendizaje de los estudiantes; y a su vez, a los estudiantes les permita conocer su estado actual de conocimiento y aprender en forma continua y autónoma).

También se realizará una evaluación sumativa a través de dos exámenes parciales y una evaluación final.

(*) https://www.youtube.com/channel/UCojbWG4EwX7nBKQWX_Zt4tQ

B - CONDICIONES PARA REGULARIZAR EL CURSO

Para alcanzar la regularidad en la materia cada estudiante deberá cumplimentar los siguientes requisitos:

- 1 Asistir al 80 % de las clases prácticas
- 2- Aprobar no menos del 80 % de las Llaves que se tomarán a lo largo de toda la cursada (instancias de evaluaciones múltiple opción que reflejen un seguimiento de la asignatura y comprensión de los contenidos dados)
- 3 Aprobar 2 (dos) evaluaciones parciales que versarán sobre los temas desarrollados. Para aprobar cada parcial (o alguna de sus recuperaciones), el alumno deberá alcanzar un puntaje igual o superior al 60 %.

Cada evaluación parcial contará con dos recuperatorios de acuerdo a OCS 32/14. La primera recuperación de cada parcial en un término aproximado de una semana, y considerando que hayan pasado cuarenta y ochos (48) horas de publicados los resultados del parcial respectivo. La segunda recuperación de cada parcial se tomará en las últimas semanas del cuatrimestre.

C – RÉGIMEN DE APROBACIÓN CON EXÁMEN FINAL

El requisito de aprobación de la asignatura para los alumnos que regularicen la misma implica aprobar un EXAMEN FINAL, que constará de dos partes:

- 1- Cada estudiante deberá realizar un mapa conceptual de todos los contenidos de la asignatura haciendo las relaciones entre los conceptos que considere relevantes y grabar un video explicando el mapa realizado. Este video deberá ser enviado por mail al equipo docente 48 hs. antes de la mesa de examen para su evaluación.
- 2- Si el mapa conceptual fuese aprobado, estará en condiciones de acceder al examen oral, donde se evaluarán los contenidos teóricos de la asignatura y sus relaciones. Dicho examen es presencial.

Esta evaluación final permitirá a los estudiantes obtener las siguientes competencias de egreso: comunicarse con efectividad y aprender en forma continua y autónoma. Así mismo, permite desarrollar la comunicación oral y la capacidad de síntesis.

D – RÉGIMEN DE PROMOCIÓN SIN EXAMEN FINAL

Esta asignatura podrá aprobarse mediante régimen de promoción sin examen final.

Los alumnos promocionarán la asignatura si al finalizar el dictado de la misma, hubieran cumplido satisfactoriamente con las siguientes condiciones:

- 1 Asistir al 80 % de las clases prácticas
- 2 Aprobar no menos del 80 % de las Llaves que se tomarán a lo largo de toda la cursada (instancias de evaluaciones múltiple opción que reflejen un seguimiento de la asignatura y comprensión de los contenidos dados)
- 3 Aprobar 2 (dos) evaluaciones parciales, que serán de carácter teórico- práctico, con un puntaje no inferior al 70 % Cada evaluación parcial contará con dos recuperatorios de acuerdo a OCS 32/14. La primera recuperación de cada parcial en un término aproximado de una semana, y considerando que hayan pasado cuarenta y ochos (48) horas de publicados los resultados del parcial respectivo. La segunda recuperación de cada parcial se tomará en las últimas semanas del cuatrimestre.
- 4- Realizar un trabajo integrador (en grupos de hasta 3 estudiantes), que constará de:
- 4.1 Confección de un mapa conceptual de todos los contenidos de la asignatura haciendo las relaciones entre los conceptos que consideren relevantes y grabación de un video explicando el mapa realizado.
- 4.2 Selección de una situación problemática en la cual se visualice la aplicación de algún contenido de la asignatura en la carrera y su posterior defensa oral (en esta última también se incorporará una presentación básica en otro idioma)

 Esta evaluación permitirá a los estudiantes obtener las siguientes competencias de egreso: Identificar, formular y resolver problemas de ingeniería, Utilizar de manera efectiva las técnicas y herramientas de aplicación en la ingeniería, Desempeñarse de manera efectiva en equipos de trabajo, Comunicarse con efectividad, Aprender en forma continua y autónoma. Así mismo, permite desarrollar la comunicación oral, escrita y la capacidad de síntesis.

E – RÉGIMEN DE APROBACIÓN PARA ESTUDIANTES LIBRES

El alumno que se presente a rendir examen en condición de libre, deberá cumplimentar tres instancias:

- 1- Cada estudiante deberá realizar un mapa conceptual de todos los contenidos de la asignatura haciendo las relaciones entre los conceptos que considere relevantes y grabar un video explicando el mapa realizado. Este video deberá ser enviado por mail al equipo docente 48 hs. antes de la mesa de examen para su evaluación.
- 2- Si el mapa conceptual fuese aprobado, estará en condiciones de acceder al examen escrito de carácter teórico- práctico, que será eliminatorio. Este examen escrito se considerará aprobado cuando se responda satisfactoriamente al menos en un 70% de lo solicitado.
- 3- Si el estudiante aprueba el examen escrito, estará en condiciones de rendir el examen oral, en el que se evaluarán los contenidos teóricos de la asignatura y sus relaciones.

Esta evaluación permitirá a los estudiantes obtener las siguientes competencias de egreso: Comunicarse con efectividad y Aprender en forma continua y autónoma. Así mismo, permite desarrollar la comunicación oral y la capacidad de síntesis.

IX - Bibliografía Básica

- [1] Menuet, A., Aliaga, L., Andino, G, Altamirano, N., Garciarena Ucelay, M., Bortolussi, N., Uvieta, F. (2022) Apuntes y Material didáctico de Geometría Analítica (Cantidad 1)
- [2] Aliaga, L., Menuet, A., Andino, G, Altamirano, N., Garciarena Ucelay, M., Bortolussi, N., Uvieta, F. (2022) Apuntes y Material didáctico de Geometría Analítica (Cantidad 1)
- [3] Menuet, A. y Aliaga, L. (2022) Canal en youtube "Algebra y Geometría Analítica FICA":

https://www.youtube.com/channel/UCojbWG4EwX7nBKQWX_Zt4tQ (Última Actualización: Julio 2023)

- [4] Grossman, S. (2008). Algebra Lineal con aplicaciones, Mc Graw Hill. Impreso/ Biblioteca VM. (Cantidad 13)
- [5] Lehmann, C. (1994) Geometría Analítica. LIMUSA Noriega editores. Impreso/Biblioteca VM. (Cantidad 11)
- [6] Larson, R. (2010) Fundamentos del Álgebra Lineal Editorial CENGAGE Learning. Impreso/ Biblioteca VM. (Cantidad 15)

[7] Zill, D. (2011) Cálculo de varias variables. Editorial McGraw Hill. Libro. Impreso/Biblioteca VM. (Cantidad 5)

[8] Anton, H. (2000) Introducción al Algebra Lineal, Editorial LIMUSA. Impreso/Biblioteca VM. (Cantidad 21)

X - Bibliografia Complementaria

[1] Kreyszig Erwin (2011). Matemática avanzada para ingenieros, Editorial LIMUSA. Impreso/Biblioteca VM. (Cantidad 49)

[2] Stanley A. Smith (1998). Algebra, trigonometría y geometría analítica, Editorial ADDISON-WESLEY

Iberoamericana-Edición: 1998. Biblioteca VM. (Cantidad 1)

[3] Gockenbach, M. (2010). Finite-Dimensional Linear Algebra. Ed. Taylor & Francis Group. Digita

XI - Resumen de Objetivos

Desarrollar el pensamiento lógico-deductivo.

Reconocer las fórmulas generales de las cónicas.

Resolver sistemas de ecuaciones lineales.

Utilizar la teoría de determinantes y el cálculo matricial.

Comprender la teoría de espacio vectorial.

Interpretar el concepto de transformación lineal.

Calcular autovalores y autovectores.

Desarrollar competencias interpersonales que contribuyan a la construcción de una ciudadanía global.

XII - Resumen del Programa

VECTORES, RECTAS Y PLANOS

CÓNICAS, COORDENADAS POLARES Y ECUACIONES PARAMÉTRICAS.

RAZONAMIENTO DEDUCTIVO Y SISTEMAS DE ECUACIONES LINEALES Y MATRICES

DETERMINANTES

ESPACIOS VECTORIALES

TRANSFORMACIONES LINEALES

AUTOVALORES Y AUTOVECTORES

XIII - Imprevistos

Ante la ocurrencia de alguna situación imprevista, que dificulte o interrumpa el normal dictado de la materia, se procederá a implementar las medidas que resulten más convenientes, a fin de subsanar en la medida de lo posible, tales inconvenientes y lograr que los alumnos rindan satisfactoriamente todo el programa.

La asignatura cuenta con canal de YouTube con todo el contenido teórico, hojas de ruta, guías teórico prácticas con sus resultados y guía de actividades resueltas que promueven el estudio dirigido y el autoaprendizaje.

XIV - Otros

Conceptos previos: Se deberán Utilizar y Aplicar conceptos estudiados en:

- Curso de Ingreso
- Análisis Matemático I
- Ambientación a la vida universitaria

Para desarrollar los siguientes contenidos y tareas:

- VECTORES, RECTAS Y PLANOS
- CÓNICAS, COORDENADAS POLARES Y ECUACIONES PARAMÉTRICAS.
- RAZONAMIENTO DEDUCTIVO Y SISTEMAS DE ECUACIONES LINEALES Y MATRICES
- DETERMINANTES
- ESPACIOS VECTORIALES
- TRANSFORMACIONES LINEALES
- AUTOVALORES Y AUTOVECTORES

También para realizar las siguientes tareas:

- Utilizar entornos de desarrollo genérico y específico para simular.
- Realizar informes y presentación de trabajos prácticos

RA1

Adquirir

Pensamiento lógico deductivo

Planteo y análisis de conceptos algebraicos

Resolución de problemas matemáticos y de la ingeniería

RA2

Resolver

Sistemas de ecuaciones lineales y matrices

Resolución de problemas matemáticos y aplicados a la ingeniería

Utilizando análisis matricial, determinante, espacios vectoriales, transformaciones lineales

RA3

Interpretar

Lugar geométrico en el plano

Resolución de problemas aplicados a geometría analítica

Análisis de soluciones de sistemas de ecuaciones lineales considerando el análisis en registro algebraico y geométrico aplicando software de simulación

Resumen de Horas de la intensidad de la formación Práctica

Cantidad de horas de Teoría: 60

Cantidad de horas de Práctico Aula: (Resolución de prácticos en carpeta):50

Cantidad de horas de Práctico de Aula con software específico: (Resolución de prácticos en PC con software específico propio de la disciplina de la asignatura): 15

Cantidad de horas de Resolución Problemas Ingeniería con utilización de software específico: (Resolución de Problemas de ingeniería con utilización de software específico propio de la disciplina de la asignatura): 10

COMPETENCIAS GENÉRICAS - APORTE AL PERFIL DE EGRESO EN EL NIVEL DE DOMINIO DE CB Y TB

Competencias para formar y certificar a lo/as estudiantes según perfil de egreso / Nivel de dominio a lograr en los bloques de ciencias y tecnologías básicas.

- 1.1. Identificar, formular y resolver problemas. (nivel 1)
- 2.1. Utilizar y adoptar de manera efectiva las técnicas, instrumentos y herramientas de aplicación. (nivel 1)
- 2.3. Considerar y actuar de acuerdo con disposiciones legales y normas de calidad. (nivel 1)
- 2.6. Evaluar críticamente órdenes de magnitud y significación de resultados numéricos. (nivel 1)
- 3.1. Desempeñarse de manera efectiva en equipos de trabajo multidisciplinarios. (nivel 1)
- 3.2. Comunicarse con efectividad en forma escrita, oral y gráfica. (nivel 1)
- 3.5. Aprender en forma continua y autónoma. (nivel 1)
- 3.6. Actuar con espíritu emprendedor y enfrentar la exigencia y responsabilidad propia del liderazgo. (nivel 2)