

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Mecánica

(Programa del año 2023)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
		Ord.2		
Termodinámica	ING.ELECTROMECÁNICA	0/12-	2023	1° cuatrimestre
		18/22		
		Ord		
Towns diménsios y Mégyinos Témpioss	ING. MECATRÓNICA	22/12	2022	1° cuatrimestre
Termodinámica y Máquinas Térmicas	ING. MECATRONICA	-10/2	2023	1 cuatrimestre
		2		
		Ord.2		
Termodinámica	ING.INDUSTRIAL	1/12-	2023	1° cuatrimestre
		14/22		
		OCD		
Termodinámica	ING.ELECTROMECÁNICA	N^{o}	2023	1° cuatrimestre
		25/22		
		OCD		
Termodinámica	ING.INDUSTRIAL	N°	2023	1° cuatrimestre
		20/22		

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ARELLANO, HECTOR DANIEL	Prof. Responsable	P.Adj Exc	40 Hs
PONCE, EDWARD ROGER	Responsable de Práctico	JTP Exc	40 Hs
CORREA, JOSE BAUTISTA	Auxiliar de Práctico	JTP Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	4 Hs	2 Hs	1 Hs	7 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
13/03/2023	23/06/2023	15	105	

IV - Fundamentación

La Termodinámica es una ciencia fundamental que estudia la energía, y para los estudiantes de ingeniería de las carreras del punto I, lo es como insumo para el posterior estudio de máquinas de vapor, motores de combustión interna, máquinas

frigoríficas, turbinas de gas y los procesos de acondicionamiento de aire. Todo esto, visto con un enfoque macroscópico, le permite al estudiante que el aprendizaje sea más sencillo, al vincularlo con su intuición.

Los principios de la Termodinámica están presentes en nuestras experiencias diarias y en observaciones experimentales, que permiten establecer paralelismos entre lo que ya conocen los estudiantes y los contenidos de la materia.

El hablar en forma clara pero precisa, y estimular el pensamiento creativo del futuro ingeniero, contribuyen a una comprensión más profunda de la materia.

También se pone énfasis en el diseño, la creatividad y el uso de computadoras en la enseñanza de la ingeniería, utilizando software que permite a los estudiantes solucionar problemas de diseño, analizar ciclos de potencia de vapor y de gas, evaluar propiedades del vapor, refrigerantes etc., lo que se constituye un aporte significativo a la formación del ingeniero.

V - Objetivos / Resultados de Aprendizaje

Resultados de aprendizaje:

- 1.- Estudiar los distintos tipos de energía y su balance para entender su transformación, y con ello poder proyectar maquinas u operar las mismas, en el contexto de la utilización de gases.
- 2.- Integrar los tres principios de la Termodinámica para poder interpretar los ciclos de las maquinas térmicas y de refrigeración, desde el enfoque de la modelización para ciclos ideales.
- 3.- Realizar el análisis de los procesos de transferencia de calor con la finalidad de proyectar, dirigir y ejecutar, máquinas, equipos, aparatos e instrumentos, mecanismos y accesorios, cuyo principio de funcionamiento sea térmico.
- 4.- Desarrollar las herramientas necesarias para el conocimiento del comportamiento del aire atmosférico, y con ello poder diseñar y operar instalaciones de acondicionamiento de aire y ventilación.

VI - Contenidos

UNIDAD TEMÁTICA 1: Conceptos Fundamentales

Sustancia de trabajo. Sistema. La sustancia pura. Fases. Propiedades y estado. Sistemas de Unidades. Volumen específico y densidad. Peso específico y presión de fluidos. Presión. Temperatura, escalas y unidades. Principio cero.

UNIDAD TEMÁTICA 2: Gases ideales y reales

Ley de Boyle. Ley de Charles. Ecuación de Estado de un gas ideal. La constante del gas. Ley de Avogadro. Constante Universal de los gases. Mezcla de gases. Ley de Dalton. Análisis volumétrico y gravimétrico. Gases reales. Ecuación de Van der Waals. Ecuación de Estado General. Factor de compresibilidad. Gráficos. Otras ecuaciones de Estado.

UNIDAD TEMÁTICA 3: Energía

Unidades de Energía. Energía potencial gravitacional y cinética. Energía interna. Trabajo. Trabajo de un sistema no fluente. Calor. Trabajo de flujo. Equivalente mecánico del calor. Ecuaciones del primer principio de la Termodinámica, para sistemas fluentes y no fluentes. Calor específico. Calor específico a volumen constante y a presión constante. Calores específicos molares de las sustancias.

UNIDAD TEMÁTICA 4: Transformaciones

Curvas de expansión. Curvas de compresión. Transformaciones a volumen constante. Transformaciones a presión constante. Transformaciones isotérmicas, adiabáticas y politrópicas. Representaciones en el plano P-V.

UNIDAD TEMÁTICA 5: Segundo Principio de la Termodinámica.

Elementos de un ciclo. Trabajo de un ciclo. Rendimiento Térmico. Enunciado del segundo principio. Ciclo de Carnot. Teorema de Carnot. Temperatura termodinámica. Transformaciones reversibles e irreversibles. Entropía. Diagrama T-S. Representación de transformaciones a presión, volumen y temperatura constantes. Adiabáticas y politrópicas. Energía disponible. Tercer principio de la termodinámica.

UNIDAD TEMÁTICA 6: Ciclos ideales.

Ciclos de las máquinas de combustión externa. Ciclos Stirling y Ericsson. Ciclos de motores de combustión interna: Otto, Diésel, Semi-Diesel, Brayton y regenerativos. Rendimiento térmico, indicado, mecánico y total. Diagramas indicados de los distintos ciclos en los planos P-V y T-S.

UNIDAD TEMÁTICA 7: Vaporización.

Calores en la vaporización. Cambio de fases. Diagrama de vaporización. Tablas del vapor de agua. Punto triple y punto crítico. Los planos P-V y T-S para agua. Entalpía del líquido y del vapor. Vapor húmedo y sobrecalentado. Título de un vapor. Ciclo de Rankine. Mejoras en los ciclos y en las instalaciones de vapor. Ciclos compound, con sobrecalentamiento, regenerativos con múltiples extracciones. Ciclos binarios.

UNIDAD TEMÁTICA 8: Aire Húmedo.

Humedad absoluta y relativa. Tablas con las constantes características del aire húmedo saturado. Punto de rocío. Saturación adiabática. Psicrómetro. Temperatura de bulbo húmedo y bulbo seco. Transformaciones del aire húmedo. Tablas y diagramas psicrométricos.

UNIDAD TEMÁTICA 9: Refrigeración

Definiciones. Coeficiente de efecto frigorífico. Ciclo de Carnot. Refrigeración por compresión de vapores. Régimen seco y húmedo. Consumo de refrigerante. Mejoras de los ciclos por compresión. Refrigeración por vacío. Refrigeración por absorción. Ciclo de refrigeración por gas. Licuación de gases. Ciclo invertido para el calentamiento. Bomba de calor.

UNIDAD TEMÁTICA 10: Combustión.

Combustibles. Ecuaciones de las reacciones completas. Relación de aire-combustible. Mezcla rica y pobre. Análisis del producto de la combustión. Calor de combustión. Número de octano y de cetano. Teorías de la combustión.

UNIDAD TEMÁTICA 11: Compresores.

Introducción. Trabajo de un compresor. Espacio nocivo. Trabajo del diagrama convencional con espacio nocivo. Aire libre. Rendimientos. Compresores de 2 y múltiples etapas. Tipos de compresores.

UNIDAD TEMÁTICA 12: Transmisión de calor.

Introducción. Conducción: ecuación de Fourier, conductividad y resistividad térmicas. Conducción a través de una pared plana. Transmisión de calor de fluido a fluido. Conducción a través de una pared curva. Radiación térmica: Ley de Stefan-Boltzman. Coeficiente superficial para la radiación. Radiación desde la tubería de vapor. Convección: coeficiente de película para flujo laminar y turbulento. Convección forzada. Vapores que se condensan.

Temas adicionales para MECATRONICA

UNIDAD TEMÁTICA 13: Fenómeno de la combustión en motores

La combustión en los motores encendidos por chispa. La combustión en los motores de encendido por compresión.

UNIDAD TEMÁTICA 14: Calderas

Introducción. Combustión en calderas. Clasificación. Calderas de circulación forzada (mejora). Generación y conducción de vapor. Capacidad de producción de vapor de las calderas. La potencia de la caldera. Rendimiento global de una caldera.

UNIDAD TEMÁTICA 15: Componentes de la instalación para conducción de vapor. Manómetro. Válvulas de seguridad. Tapones fusibles. Purgadores.

UNIDAD TEMÁTICA 16: Instalaciones frigoríficas.

Ciclo de refrigeración por absorción Definiciones y conceptos generales. Refrigerantes. Sistemas de refrigeración. Cámaras y almacenes frigoríficos. Elementos constructivos. Almacenamiento

VII - Plan de Trabajos Prácticos

1) Trabajos prácticos de aula

Trabajo Práctico Nº 0: Conversión de unidades

Objetivos generales

Que refresque el manejo y la conversión de unidades

Que recuerde los distintos sistemas empleados y sus analogías

Objetivos Específicos

Que realice de modo sistemático y prolijo el desarrollo de ejercicios

Que se familiarice con las tablas, software u otras herramientas para la conversión

Que reconozca órdenes de magnitudes de propiedades habituales

Metodología

Guía de ejercicios básica para desarrollo autodidacta

Trabajo Práctico Nº 1: Sistema de Unidades - Gases ideales y reales

Objetivos generales

Que domine el manejo y la conversión de unidades empleadas en gases

Que comprenda sistemas en donde se opera con fluidos gaseosos

Objetivos Específicos

Que realice de modo sistemático y prolijo el desarrollo de ejercicios

Que reconozca dispositivos clásicos en las aplicaciones de gases ideales y reales

Que se familiarice con los instrumentos de medición de gases ideales y reales

Metodología

Guía de ejercicios para desarrollo en prácticos de aula

Trabajo Práctico N° 2: 1er PRINCIPIO DE LA TERMODINÁMICA - BALANCE DE ENERGÍA

Objetivos generales

Que domine el manejo y la conversión de unidades

Que recuerde los distintos sistemas empleados y sus analogías

Objetivos Específicos

Que comprenda la dinámica de resolución de problemas

Que desarrolle de forma prolija los ejercicios

Que se familiarice con las tablas, software u otras herramientas para la conversión

Que reconozca órdenes de magnitudes de propiedades habituales

Metodología

Guía de ejercicios para desarrollo en prácticos de aula

Trabajo Práctico Nº 3: BALANCE DE ENERGÍA - TRANSFORMACIONES

Objetivos generales

Que domine el manejo y la conversión de unidades

Que recuerde los distintos sistemas empleados y sus analogías

Objetivos Específicos

Que comprenda la dinámica de resolución de problemas

Que desarrolle de forma prolija los ejercicios

Que se familiarice con las tablas, software u otras herramientas para la conversión

Que reconozca órdenes de magnitudes de propiedades habituales

Metodología

Guía de ejercicios para desarrollo en prácticos de aula

Trabajo Práctico Nº 4: 2da Ley de la Termodinámica – Ciclos con Gases Ideales

Objetivos generales

Que asocie las transformaciones termodinámicas dentro de un ciclo

Que domine el manejo y la conversión de unidades y magnitudes para estos casos

Objetivos Específicos

Que realice de modo sistemático y prolijo el desarrollo de ejercicios

Que se familiarice con las tablas, software u otras herramientas para la interpretación

Que reconozca órdenes de magnitudes de propiedades habituales

Metodología

Guía de ejercicios para desarrollo en prácticos de aula

Trabajo Práctico N° 5: Ciclos de Potencia de Vapor (Ciclo Rankine)

Objetivos generales:

Que asocie las transformaciones termodinámicas dentro de un ciclo

Que domine el manejo y la conversión de unidades y magnitudes para estos casos

Objetivos Específicos:

Que realice de modo sistemático y prolijo el desarrollo de ejercicios

Que se familiarice con las tablas, software u otras herramientas para la interpretación

Que reconozca órdenes de magnitudes de propiedades habituales

Metodología

Guía de ejercicios para desarrollo en prácticos de aula

Trabajo Práctico Nº 6: Ciclos Frigoríficos

Objetivos generales:

Que asocie las transformaciones termodinámicas dentro de un ciclo

Que domine el manejo y la conversión de unidades y magnitudes para estos casos

Objetivos Específicos:

Que realice de modo sistemático y prolijo el desarrollo de ejercicios

Que se familiarice con las tablas, software u otras herramientas para la interpretación

Que reconozca órdenes de magnitudes de propiedades habituales

Metodología

Guía de ejercicios para desarrollo en prácticos de aula

Trabajo Practico Nº 7: Aire Húmedo. Problemas de aplicación

Objetivos generales:

Que asocie las transformaciones del aire atmosférico con las instalaciones físicas.

Que domine las variables involucradas en el diagrama psicrométrico.

Objetivos Específicos:

Que realice de modo sistemático y prolijo el desarrollo de ejercicios

Que se familiarice con el uso del diagrama psicrometrico y del psicrómetro.

Que reconozca el uso de unidades de propiedades del aire húmedo.

Metodología

Guía de ejercicios para desarrollo en prácticos de aula

Trabajo Practico Nº 8: Transmisión de calor. Problemas de aplicación

Objetivos generales:

Que asocie las distintas formas de transferencia de calor y su ocurrencia simultánea.

Que domine las ecuaciones fundamentales para las distintas formas de transmisión de calor.

Objetivos Específicos:

Que realice de modo sistemático y prolijo el desarrollo de ejercicios

Que se familiarice con el uso de las tablas ad hoc.

Que reconozca el uso de unidades de energía bajo la forma de calor.

Metodología

Guía de ejercicios para desarrollo en prácticos de aula

2) Trabajo práctico de laboratorio

Práctico de laboratorio: Ciclo de gases

Objetivos Generales

Que aplique en esta práctica los conceptos desarrollados en la teoría

Que pueda resolver una situación real afín a su carrera

Que adquiera análisis crítico de los distintos escenarios propuestos

Objetivos Específicos

Estudiar el trabajo termodinámico realizado por una máquina de calor para elevar cierta masa y que logre encontrar utilidad

Que domine tablas, variables y propiedades de un caso real

Que resuelva cálculos a partir de registros y lectura de dato

Que maneje instrumentos de medición, simulación y sensores

Que optimice la dinámica de uso de un sistema ya diseñado

Metodología

La experiencia se lleva a cabo mediante el análisis de un sistema diseñado para tal fin, acompañado de una guía teórica-práctica. Es una actividad que se desarrolla en el laboratorio de Física y se emplea instrumental de PASCO scientific y software DataStudio.

3) Trabajo práctico de taller

Práctico de Taller: Refrigeración - Ciclo de compresión

Objetivos Generales

Que aplique en esta práctica los conceptos desarrollados en la teoría

Que pueda resolver una situación real afín a su carrera

Que adquiera análisis crítico de los distintos escenarios propuestos

Objetivos Específicos

Que domine tablas, variables y propiedades de un caso real

Que resuelva cálculos a partir de la lectura de datos

Que maneje instrumentos de medición específicos

Metodología

La experiencia se lleva a cabo mediante el análisis de un sistema de refrigeración comercial existente dispuesto como recurso didáctico. Acompañado de una guía teórica-práctica. Es una actividad que se desarrolla en el taller de electromecánica y se emplea el software libre Cycle D-HX - NIST Cycle Analysis Program..

VIII - Regimen de Aprobación

A - METODOLOGÍA DE DICTADO DEL CURSO:

El dictado del curso estará integrado por dos tipos de clases, uno de teoría NO obligatorio, y el otro de clases prácticas, con obligatoriedad de asistencia al 80 % de las mismas. En la teoría se tratarán los contenidos explicitados en el punto VI, con abundante cantidad de ejemplos cotidianos que permitan al estudiante, vincular leyes, enunciados y ecuaciones con fenómenos físicos usuales. En cada unidad temática, se utilizaran videos que faciliten una mejor visualización de los temas tratados. Las clases prácticas estarán sincronizadas con la teoría de manera que se desarrollen con los fundamentos debidamente analizados.

B - CONDICIONES PARA REGULARIZAR EL CURSO

Para rendir como alumno regular, se deberán cumplir los siguientes requisitos:

- a) Tener una asistencia del 80% de los trabajos prácticos.
- b) Tener aprobados los dos exámenes parciales, que tendrán una pregunta teórica y el resto práctica. Cada parcial tendrá dos recuperaciones.
- c) Para aprobar los dos parciales o sus recuperaciones, deben totalizar 7 puntos.

C – RÉGIMEN DE APROBACIÓN CON EXÁMEN FINAL

En el examen final el alumno deberá exponer sobre distintos temas para demostrar, el dominio alcanzado sobre la totalidad de los contenidos del curso, y su capacidad de construir una visión integral de los mismos. La calificación mínima es 4 puntos.

D – RÉGIMEN DE PROMOCIÓN SIN EXAMEN FINAL

El curso no contempla régimen de promoción sin examen final.

E – RÉGIMEN DE APROBACIÓN PARA ESTUDIANTES LIBRES

La evaluación consistirá en dos partes:

- a) Práctica: el estudiante deberá resolver correctamente dos problemas integradores de distintos temas del programa de trabajos prácticos. Posteriormente fundamentará el método usado para la resolución. La práctica es eliminatoria.
- b) Teoría: se elegirán tres temas del programa analítico, que deberá exponer con soltura, y cumpliendo con lo determinado en el punto C para alumnos Regulares.

IX - Bibliografía Básica

- [1] Çengel, Yunus y Boles, Michael "Termodinámica" 7ma. Edición Edit McGraw Hill
- [2] Obert & Caggioli "Termodinámica" 2da. Edición España Editorial McGraw-Hill
- [3] Wark Jr., Kenneth "Termodinámica" 5ta. Edición México Edit. McGraw Hill.
- [4] Giacosa, Dante "Motores endotérmicos" 3ra. edición España Edit. Dossat S.A
- [5] Stoever, Norman "Ingeniería termodinámica" 6ta. edición Méxido Edit. CECSA.
- [6] Obert & Young "Termodynamics" 2da. Edición New York Edit. McGraw Hill.
- [7] Faires, Virgil "Termodinámica" 2da. Edición España Editorial. Eudeba.
- [8] Obert, Edward F "Motores de Combustión Interna" -6ta edición México Edit. CECSA.
- [9] M.J.Moran y H.N. Shapiro- "Fundamentos de Termodinámica técnica"- Tomos 1 y 2- 1996- Editorial Reverté.
- [10] Fundamentos de Termodinámica Técnica- Tomo 1 y 2- M.J.Moran y H.N. Shapiro Editorial Reverte 1996
- [11] Mesny, Marcelo: "Generación de vapor". Editorial G. GILLI.
- [12] Quadri, Néstor P.: "Instalaciones de aire acondicionado y calefacción". Editorial ALSINA.
- [13] Severns, W. H.: La producción de energía mediante el vapor de agua, el aire y los gases.

X - Bibliografia Complementaria

- [1] Guidi, Guido "Transmisión del calor" Bs. As. Argentina Editorial Nva. Librería.
- [2] Diez García "Problemas de termodinámica" Bs.As. Argentina Edit. Nva. Librería.
- [3] Kirillin-Sichev-Sheindlin "Termodinámica técnica" Moscú Edit. Mir.
- [4] J.A. Manrique Veladez-"Termodinámica" 3ra Edición- 2001 -Oxford University Press

XI - Resumen de Objetivos

- 1.- Estudiar los distintos tipos de energía y su balance
- 2.- Integrar los tres principios de la Termodinámica
- 3.- Realizar el análisis de los procesos de transferencia de calor

4.- Desarrollar las herramientas necesarias para el conocimiento del comportamiento del aire atmosférico

XII - Resumen del Programa

UNIDAD TEMÁTICA 1: Conceptos Fundamentales

Sustancia de trabajo. Sistema. La sustancia pura. Fases. Propiedades y estado. Sistemas de Unidades.

UNIDAD TEMÁTICA 2: Gases ideales y reales. Leyes fundamentales

UNIDAD TEMÁTICA 3: Energía

Ecuaciones del primer principio de la Termodinámica, para sistemas fluentes y no fluentes.

UNIDAD TEMÁTICA 4: Transformaciones

Transformaciones a volumen constante. Transformaciones a presión constante. Transformaciones isotérmicas, adiabáticas y politrópicas. Representaciones en el plano P-V.

UNIDAD TEMÁTICA 5: Segundo Principio de la Termodinámica.

Rendimiento Térmico. Ciclo de Carnot. Transformaciones reversibles e irreversibles. Entropía. Diagrama T-S. Energía disponible. Tercer principio de la termodinámica.

UNIDAD TEMÁTICA 6: Ciclos ideales.

Ciclos de las máquinas de combustión externa. Ciclos Stirling y Ericsson. Ciclos de motores de combustión interna: Otto, Diésel, Semi-Diesel, Brayton y regenerativos. Rendimientos. Diagramas indicados de los distintos ciclos en los planos P-V y T-S.

UNIDAD TEMÁTICA 7: Vaporización.

Calores en la vaporización. Diagrama de vaporización. Tablas del vapor de agua. Punto triple y punto crítico. Los planos P-V y T-S para agua. Entalpía del líquido y del vapor. Vapor húmedo y sobrecalentado. Título de un vapor. Ciclo de Rankine. Ciclos binarios.

UNIDAD TEMÁTICA 8: Aire Húmedo.

Humedad absoluta y relativa. Tablas con las constantes características del aire húmedo saturado. Punto de rocío. Saturación adiabática. Psicrómetro. Transformaciones del aire húmedo. Tablas y diagramas psicrométricos.

UNIDAD TEMÁTICA 9: Refrigeración

Coeficiente de efecto frigorífico. Ciclo de Carnot. Refrigeración por compresión de vapores. Régimen seco y húmedo. Consumo de refrigerante. Mejoras de los ciclos por compresión. Refrigeración por absorción. Ciclo de refrigeración por gas. Licuación de gases. Ciclo invertido para el calentamiento.

UNIDAD TEMÁTICA 10: Combustión.

Combustibles. Ecuaciones de las reacciones completas. Relación de aire-combustible. Mezcla rica y pobre. Análisis del producto de la combustión. Calor de combustión. Número de octano y de cetano. Teorías de la combustión.

UNIDAD TEMÁTICA 11: Compresores.

Trabajo de un compresor. Espacio nocivo. Trabajo del diagrama convencional con espacio nocivo. Aire libre. Rendimientos. Compresores de 2 y múltiples etapas. Tipos de compresores.

UNIDAD TEMÁTICA 12: Transmisión de calor.

Conducción: ecuación de Fourier, conductividad y resistividad térmicas. Radiación térmica: Ley de Stefan-Boltzman. Coeficiente superficial para la radiación. Radiación desde la tubería de vapor. Convección: coeficiente de película para flujo laminar y turbulento. Convección forzada. Vapores que se condensan.

Temas adicionales para MECATRONICA

UNIDAD TEMÁTICA 13: Fenómeno de la combustión en motores

La combustión en los motores encendidos por chispa. La combustión en los motores de encendido por compresión.

UNIDAD TEMÁTICA 14: Calderas

Introducción. Combustión en calderas. Clasificación. Calderas de circulación forzada (mejora). Generación y conducción de vapor. Capacidad de producción de vapor de las calderas. La potencia de la caldera. Rendimiento global de una caldera.

UNIDAD TEMÁTICA 15: Componentes de la instalación para conducción de vapor

Manómetro. Válvulas de seguridad. Tapones fusibles. Purgadores.

UNIDAD TEMÁTICA 16: Instalaciones frigoríficas.

Ciclo de refrigeración por absorción Definiciones y conceptos generales. Refrigerantes. Sistemas de refrigeración. Cámaras y almacenes frigoríficos. Elementos constructivos. Almacenamiento

XIII - Imprevistos

En el caso que por causas de fuerza mayor, se deba recurrir al dictado virtual, tanto la teoría como la práctica se harán con esa modalidad, estableciéndose:

- 1.- la conexión obligatoria al 80 % de las clases prácticas.
- 2.- los lineamientos generales de los trabajos prácticos serán explicados en las clases virtuales, y se dispondrá horarios de consultas para la terminación de los mismos.
- 3.- para el cumplimiento de la asistencia a las clases prácticas, previamente los estudiantes deberán responder un formulario con preguntas teóricas relacionadas al tema a desarrollar.

XIV - Otros

Aprendizajes Previos:

Conocer las propiedades de las sustancias, superficie P-V-T, etc.(Química Gral. Aplicada)

Conceptos de energía y balance. Leyes de Newton (Física 1)

Operar con ecuaciones diferenciales. (Análisis matemático 2).

Detalles de horas de la Intensidad de la formación práctica.

Cantidad de horas de Teoría: 60 hs

Cantidad de horas de Práctico Aula: (Resolución de prácticos en carpeta): 39 hs

Cantidad de horas de Práctico de Aula con software específico: (Resolución de prácticos en PC con software específico propio de la disciplina de la asignatura)

Cantidad de horas de Formación Experimental: (Laboratorios, Salidas a campo, etc.): 6 hs

Cantidad de horas de Resolución Problemas Ingeniería con utilización de software específico: (Resolución de Problemas de ingeniería con utilización de software específico propio de la disciplina de la asignatura): 0 hs

Cantidad de horas de Resolución Problemas Ingeniería sin utilización de software específico: (Resolución de Problemas de ingeniería SIN utilización de software específico): 0 hs

Cantidad de horas de Diseño o Proyecto de Ingeniería con utilización de software específico: (Horas dedicadas a diseño o proyecto con utilización de software específico propio de la disciplina de la asignatura): 0 hs

Cantidad de horas de Diseño o Proyecto de Ingeniería sin utilización de software específico: (Horas dedicadas a diseño o proyecto SIN utilización de software específico):0

COMPETENCIAS GENÉRICAS - APORTE AL PERFIL DE EGRESO EN EL NIVEL DE DOMINIO DE CB Y TB

Competencia

1.1. Identificar, formular y resolver problemas. Nivel dominio: Identificar y formular un problema para generar alternativas de solución, aplicando los métodos aprendidos (Nivel 1)

Competencia

2.1. Utilizar y adoptar de manera efectiva las técnicas, instrumentos y herramientas de aplicación.

Nivel dominio: Utilizar software genérico y específico y realizar programas sencillos en entornos de desarrollo (Nivel 1)

Utilizar equipos, instrumentos, herramientas y comprender técnicas para su uso eficiente.

Observaciones: Se utiliza software específico, pero NO se realizan programas sencillos.

Competencia

2.5. Planificar y realizar ensayos y/o experimentos y analizar e interpretar resultados.

Nivel de dominio: Verificar experimentalmente los conceptos y modelos teóricos utilizando técnicas, instrumentos y herramientas considerando las normas de higiene y seguridad de procesos (Nivel 1)

Observaciones: Se hacen verificaciones de modelos teóricos, pero no se consideran normas de higiene y seguridad

Competencia

2.6. Evaluar críticamente ordenes de magnitud y significación de resultados numéricos.

Nivel dominio: Comprender y operar los modelos matemáticos necesarios para calcular, formular y resolver problemas de la especialidad (Nivel 1)

Competencia

3.2. Comunicarse con efectividad en forma escrita, oral y gráfica.

Nivel dominio: Expresar las propias ideas de forma estructurada e inteligible, interviniendo con relevancia y oportunidad tanto en situaciones de intercambio, como en más formales y estructuradas (Nivel 1)

Comunicar correcta y claramente lo que se solicita en escritos breves con utilización de texto y gráficos.

Observaciones: No se solicitan escritos ad hoc, pero si se exige comunicación clara en parciales, trabajos Prácticos y finales.