

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Quimica

(Programa del año 2023) (Programa en trámite de aprobación) (Presentado el 06/09/2023 18:43:36)

Area: Tecnología Química y Biotecnología

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
TECNOLOGÍA DE LOS SERVICIOS	INC. EN ALIMENTOS	38/11	2022	2º avatrima astro
INDUSTRIALES Y ELECTRICIDAD	ING. EN ALIMENTOS	36/11	2023	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
BARBERO, BIBIANA PATRICIA	Prof. Responsable	P.Asoc Exc	40 Hs
BARROSO, MARIANA NOELIA	Prof. Colaborador	P.Adj Semi	20 Hs
FALCO, CRISTIAN ARIEL	Prof. Colaborador	P.Adj Exc	40 Hs
TUNEZ, FERNANDO MARCELO	Prof. Colaborador	P.Adj Exc	40 Hs
PALATNIK, DIANA RAQUEL	Responsable de Práctico	JTP Semi	20 Hs
ROTGER, OMAR DARIO	Auxiliar de Práctico	A.1ra Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	4 Hs	3 Hs	Hs	7 Hs

Tipificación	Periodo	
A - Teoria con prácticas de aula y campo	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
07/08/2023	17/11/2023	15	105

IV - Fundamentación

La asignatura Tecnología de los Servicios Industriales y Electricidad es considerada complementaria en la formación profesional del ingeniero que se relacione con la actividad industrial. Por lo tanto, el desarrollo de los temas que constituyen este curso está orientado a que el estudiante conozca los tipos de máquinas e instalaciones generales que se requieren en las industrias para suministrar los servicios necesarios para la producción.

V - Objetivos / Resultados de Aprendizaje

Lograr que el alumno comprenda los principios básicos de los distintos servicios requeridos en la industria teniendo en cuenta las implicancias medioambientales que conllevan.

VI - Contenidos

CONTENIDOS MÍNIMOS: Combustión y combustibles. Servicios térmicos. Servicios de agua. Servicios de fuerza motriz. Servicios de frío. Introducción a las centrales no convencionales. Comportamiento de máquinas eléctricas. Pérdidas, rendimiento, calentamiento, enfriamiento. Protección de instalaciones. Luminotecnia.

PROGRAMA ANALÍTICO Y/O DE EXAMEN

Unidad 1: El agua en la industria alimentaria.

Requerimientos de cantidad y calidad para distintos usos. Clasificación del agua según los distintos usos. Fuentes para obtener agua. Tipos de impurezas en el agua. Métodos de purificación: Procesos de coagulación, sedimentación, filtración, intercambio iónico, cloración, ozonización, adsorción. Aguas residuales en la industria. Consideraciones medioambientales. Gestión y tratamientos de las aguas residuales: procesos fisicoquímicos, biológicos, avanzados.

Unidad 2: Instalaciones hidráulicas.

Componentes principales de los sistemas de cañerías. Caños: tipos, normas, materiales, dimensiones. Determinación del tamaño del tubo. Selección del material. Accesorios de las tuberías. Válvulas: descripción, clasificación, selección. Conexiones: tamaños y formas disponibles. Bombas: tipos de bombas, clasificación y descripción. Tendido de cañerías: criterios básicos de diseño, representación.

Aislación térmica de cañerías: definición y objetivos. Materiales aislantes: características, propiedades y formas disponibles. Cálculo de pérdidas de calor a través de las paredes de las cañerías. Cálculo de espesor crítico de la aislación. Espesor óptimo económico de la aislación.

Unidad 3: Instalaciones neumáticas. Aire comprimido, vacío y gases.

Aplicaciones e instalaciones de aire comprimido. Unidades de compresión: compresores dinámicos y de desplazamiento positivo. Selección del tipo, cantidad y ubicación de los compresores. Acondicionamiento del aire comprimido. Red de distribución de aire comprimido: consideraciones sobre la instalación, diseño, tipos de canerías, accesorios y mantenimiento. Aplicaciones y usos de vacío en la industria. Producción de vacío. Bombas de vacío. Consideraciones sobre instalaciones de vacío.

Instalaciones de gases combustibles (gas natural y gas licuado) y gases especiales (oxígeno, dióxido de carbono, nitrógeno, etc.). Cañerías de distribución. Accesorios.

Unidad 4: Servicios de vapor: Generación y distribución

Generadores de vapor: calderas. Descripción. Clasificación y tipos. Parámetros fundamentales. Componentes. Accesorios de la caldera. Capacidad y rendimiento de una caldera. Operación y mantenimiento. Consideraciones acerca de la instalación de calderas.

Sistemas de distribución de vapor. Circuito típico de distribución de vapor y recolección de condensado. Selección de la presión de trabajo. Selección y diseño de la cañería de distribución de vapor. Accesorios de las cañerías de vapor: separadores, filtros, trampas de vapor. Consideraciones sobre expansión de cañerías.

Unidad 5: Servicios de frío.

Introducción. El frío en la industria. Definiciones. Instalaciones para refrigeración y congelación. Utilización de nitrógeno líquido y anhídrido carbónico sólido.

Sistema de refrigeración mecánica. Ciclo de compresión de vapor. Componentes de los sistemas de compresión. Diagrama de Mollier. Cálculos de capacidad de refrigeración, trabajo y potencia requeridos para la compresión, coeficiente de performance, calor intercambiado en el condensador. Procesos multietapas. Bomba de calor. Fluidos refrigerantes: características, propiedades y usos. Sistema de refrigeración por absorción. Cálculo de la carga térmica de refrigeración.

Unidad 6: Combustibles y combustión

Combustibles. Clasificación. Combustibles sólidos, líquidos y gaseosos. Propiedades y características de los combustibles. Poder calorífico superior e inferior. Índice de octano. Índice de cetano. Biocombustibles. Petróleo no convencional. Combustión. Definición y aspectos generales de la combustión. Ecuaciones básicas de la combustión. Cálculo de aire necesario para la combustión. Ejemplos. Parámetros técnicos de la combustión. Exceso de aire. Eficiencia de la combustión. Límite de inflamabilidad. Velocidad de ignición. Temperatura de llama. Análisis de la combustión. Gráfico de combustión. Equipos de combustión.

Unidad 7: Instalaciones de fuerza motriz.

Motores de combustión interna: alternativos (ciclo Otto, ciclo Diesel, motores de dos y cuatro tiempos) y rotativos (turbinas de gas). Motores de combustión externa: alternativos (máquina de vapor) y rotativos (turbina de vapor). Características

principales y aplicaciones. Consideraciones ambientales sobre los gases de combustión. Medidas para evitar la contaminación atmosférica.

Unidad 8: Energías alternativas y centrales no convencionales.

Transición energética. Gestión eficiente de la energía. Energía solar. Intensidad de la radiación solar. Colectores de placa plana. Aplicaciones de helio tecnología. Destiladores solares. Energía geotérmica. Fuentes geotérmicas. Energía eólica. Energía hídrica. Centrales hidroeléctricas. Potencia del hidrógeno como combustible. Centrales de biomasa. Biogás y biodigestores. Análisis de matriz energética.

Unidad 9: Comportamiento de Máquinas Eléctricas.

Máquina de corriente continua. Máquina de corriente alterna sincrónica. Máquina de corriente alterna asincrónica. Transformadores. Principios de funcionamiento, pérdidas y rendimiento.

Unidad 10: Protecciones de Instalaciones de Baja Tensión.

Protección de instalaciones: interruptores, protección termo-magnética y fusibles. Protección contacto directo e indirecto: Interruptor diferencial y puesta a tierra.

Unidad 11: Luminotecnia.

Magnitudes luminosas y unidades. Tipos de lámparas. Niveles de iluminación recomendados por actividad. Cálculo de alumbrado interior por el método del flujo luminoso.

VII - Plan de Trabajos Prácticos

Resolución de problemas tipo:

Se resolverán problemas de aplicación, los cuales serán presentados en guías de problemas.

Seminarios y monografías:

Se prepararán seminarios y monografías sobre temas específicos de la asignatura, los cuales serán guiados mediante cuestionarios y/o guías de estudio.

Visitas a instalaciones industriales o similares:

Se realizarán visitas a sectores de servicios y laboratorios de la UNSL donde se pueden apreciar instalaciones hidráulicas, neumáticas, eléctricas y equipos tales como calderas, ablandadores de agua, torres de enfriamiento, compresores de aire, bombas de vacío, etc.

De ser posible, también se realizarán visitas a industrias locales.

VIII - Regimen de Aprobación

Metodología de enseñanza

Las metodologías de enseñanza aplicadas en esta asignatura en las clases teóricas, prácticas de aula, seminarios y visitas a industrias promueven una enseñanza participativa, activa, en la que se busca el desarrollo de habilidades y competencias que permitan a los estudiantes enfrentar los desafíos del mundo laboral y social actual.

Para regularizar la asignatura se requiere:

- Cumplir con el 80% de asistencia a las clases teórico-prácticas.
- Presentar el 100% de los seminarios y monografías sobre temas específicos.
- Aprobar una evaluación integral bajo la modalidad de proyecto de ingeniería.

Para aprobar la asignatura por promoción sin examen final se requiere haber cumplido con las condiciones de regularidad y responder satisfactoriamente una entrevista al final del curso.

Para aprobar la asignatura mediante un examen final se requiere haber cumplido con las condiciones de regularidad y aprobar un examen escrito y/u oral.

Los alumnos libres podrán aprobar la asignatura realizando un proyecto de ingeniería propuesto por el equipo docente y aprobando un examen escrito y/u oral.

IX - Bibliografía Básica

- [1] Manual del Ingeniero Químico. J. Perry. Editorial Mc Graw Hill.
- [2] La producción de energía mediante el vapor de agua, el aire y los gases. W. H. Severns, H. E. Degler, C. Miles. 1° ed. (1982) Barcelona. Editorial Reverte.
- [3] Guía de vapor para la industria. CONAE. 2002.
- [4] Tutoriales de Ingeniería del Vapor. Spirax Sarco. Disponible en:

www.spiraxsarco.com/resources/steam-engineering-tutorials.asp

[5] Curso de Cañerías Industriales (piping). Fernando Golzman. 2003. Disponible en:

www.pipingdesign.com/documents/piping_espagnol.pdf

X - Bibliografia Complementaria

- [1] Manual de Aislamiento en la Industria. ISOVER. Disponible en: www.isover.net/asesoria/manuales/industria.htm
- [2] Informes Técnicos Mavainsa. Disponibles en: www.mavainsa.com/html/mavainsa.htm
- [3] Apuntes de Sistema de Aire Comprimido. INDISA S.A., julio 2002, Medellín, Colombia. Disponible en: www.indisa.com.co
- [4] Manual de aire comprimido. Atlas Copco. 7° ed., 2010, Bélgica. Disponible en: www.atlascopco.com
- [5] Instalaciones de aire acondicionado y calefacción. Néstor P. Quadri. 7° ed. (2005) Buenos Aires. Editorial Alsina.
- [6] Energía solar. Néstor P. Quadri. 2° ed. (1996) Buenos Aires. Editorial Alsina.
- [7] Electrotecnia. José García, Trasancos. Editorial Paraninfo. 2001.
- [8] Electrotecnia. Pablo Alcalde San Miguel. Editorial Paraninfo. 2002.
- [9] Electrotecnia. Curso Elemental. Heinrich Hübscher. Editorial Rererté S.A. 1991.
- [10] Instalaciones de gas. Néstor P. Quadri. (1998) Buenos Aires. Editorial Alsina.
- [11] Código Argentino de Gas NAG. ENARGAS.
- [12] Catálogos. Folletos. Informes Técnicos.

XI - Resumen de Objetivos

Lograr que el alumno comprenda los principios básicos de los distintos servicios requeridos en la industria teniendo en cuenta las implicancias medioambientales que conllevan.

XII - Resumen del Programa

RESUMEN DEL PROGRAMA

Unidad 1: El agua en la industria alimentaria.

Unidad 2: Instalaciones hidráulicas.

Unidad 3: Instalaciones neumáticas. Aire comprimido, vacío y gases.

Unidad 4: Servicios de vapor. Generación y distribución.

Unidad 5: Servicios de frío.

Unidad 6: Combustibles y combustión.

Unidad 7: Instalaciones de fuerza motriz.

Unidad 8: Energías alternativas y centrales no convencionales.

Unidad 9: Comportamiento de máquinas eléctricas.

Unidad 10: Protecciones de instalaciones de baja tensión.

Unidad 11: Luminotecnia.

XIII - Imprevistos

Se intentará resolverlos en cuanto se presenten.

XIV - Otros

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		