

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Quimica

(Programa del año 2022) (Programa en trámite de aprobación) (Presentado el 22/12/2022 13:28:01)

Area: Tecnología Química y Biotecnología

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
REACCIONES HETEROGENEAS	LIC. EN QUIMÍCA	3/11	2022	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
GARCIA, MARIA GUADALUPE	Prof. Responsable	P.Adj Exc	40 Hs
GONZALEZ, JORGE ALBERTO	Responsable de Práctico	JTP Simp	10 Hs
VILLAGRAN OLIVARES, ALEJANDRA	Auxiliar de Práctico	A.1ra Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
9 Hs	4 Hs	4 Hs	1 Hs	9 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
08/08/2022	18/11/2022	15	140

IV - Fundamentación

El curso se complementa con otros cursos de tecnología química como fenómenos de transporte, operaciones unitarias, diseño de reactores para reacciones homogéneas y en este caso reacciones heterogéneas, ofreciéndose las bases para el estudio de reactores industriales partiendo de información obtenida en laboratorio, lo que involucra también el conocimiento de cambio de escala.

V - Objetivos / Resultados de Aprendizaje

Los objetivos generales del curso:

- •El estudio de la teoría básica de las reacciones químicas heterogéneas (catalizadas y no catalizadas) y de las herramientas necesarias que permitan el diseño y adecuado funcionamiento de los reactores químicos, para lo cual se hará uso de conceptos aportados por la termodinámica, la cinética química, la mecánica de los fluidos y los fenómenos de transporte.
- Aplicación de métodos de interpretación de datos experimentales en el diseño de reactores.
- •Estudio de técnicas de caracterizaciones físico-químicas. Determinaciones de las características estructurales y texturales de diversos sólidos.
- •Determinación de la influencia de las características estructurales y texturales de los catalizadores en la cinética y en el diseño de reactores.

VI - Contenidos

Tema I.- Adsorción física de gases sobre sólidos: Descripción de la adsorción, ecuaciones fundamentales, conceptos del número de moléculas que chocan contra una superficie y del tiempo de permanencia sobre ella. Influencia de la

temperatura sobre el tiempo de permanencia. Expresiones analíticas de la adsorción: A) Isoterma de Langmuir; B) Ecuación de BET. Problemas de aplicación.

Tema II.- Métodos de caracterización de sólidos: Introducción. Características esenciales de los sólidos. Consideraciones prácticas. Clasificación de las técnicas de caracterización de sólidos y superficies: a) Químicas; b)Fisicoquímicas; c) Espectroscópicas. Breve descripción. Selección de las técnicas más apropiadas. Aplicaciones.

Tema III.- Caracterización física de sólidos porosos: Superficie interna y externa. Determinación de superficie específica por el método de BET. Determinación de la porosidad por el método del helio-mercurio. Sistema poroso bidisperso. Distribución de tamaños de poros: métodos por penetración de mercurio y desorción de nitrógeno. Radio medio de poros. Ecuaciones de Wheeler para sistemas monodispersos. Determinaciones experimentales. Problemas de aplicación.

Tema IV.- Reacciones heterogéneas sólido-gas no catalizadas: Características generales. Selección de modelos. Velocidad de reacción en partículas esféricas de tamaño constante. Etapas de proceso. Expresiones de velocidad: a) La reacción es controlada por la etapa de difusión en la película gaseosa; b) El control es por la etapa de difusión a través de los productos de reacción; c) Controla la etapa química. Velocidad de reacción para partículas esféricas de tamaño decreciente. Determinación de la etapa que controla la velocidad de reacción. Problemas de aplicación.

Tema V.- Nociones de diseño de reactores para reacciones sólido-gas no catalizadas: Diferentes tipos de flujo para la fase gaseosa y la fase sólida, ejemplos industriales. Nociones de diseño de reactores: a) Para partículas de tamaño uniforme moviéndose en flujo pistón y composición del gas uniforme; b) Para partículas de diferentes tamaños pero invariante, flujo pistón del sólido y composición del gas uniforme; c) Para partículas de un único e invariante tamaño, con el sólido en flujo en mezclado total y composición del gas uniforme; d) Para mezclas de partículas de diferentes tamaños, mezclado total de las fases sólidas y composición uniforme del gas. Problemas de aplicación.

Tema VI.- Reacciones heterogéneas sólido-gas catalizadas: Adsorción química. Características diferenciales con la adsorción física. Función del catalizador. Selectividad. Pseudo equilibrio. Etapas de una reacción catalítica. Etapas físicas y químicas. Posibilidad de eliminar el control físico. Soportes de catalizadores. Agentes activos. Preparación de catalizadores. Acción de promotores e inhibidores. Venenos, diferentes tipos, su acción. Regeneración de catalizadores. Problemas de aplicación.

Tema VII.- Expresiones de velocidad para reacciones catalíticas: Expresiones de velocidad en base a diferentes mecanismos y diferentes etapas controlantes. Análisis cuantitativo y cualitativo de los resultados. Problemas de aplicación.

Tema VIII.- Transferencia de materia y calor en la película exterior del catalizador: Falsificación del orden de reacción y energía de activación. Correlaciones generales para la determinación de los coeficientes de transmisión de calor y materia. Cálculo de la diferencia de temperatura y concentración en la película. Puntos de estabilidad para los casos en que la resistencia a la difusión es despreciable o apreciable. Influencia sobre selectividades. Problemas de aplicación.

Tema IX.- Difusión en el interior de los catalizadores porosos: Difusión normal, Knudsen y superficial. Ecuaciones fundamentales. Cálculo de los coeficientes de difusión. Difusión de gases en el interior de las pastillas catalizadoras. Coeficientes de difusión efectivos. Modelos de sistemas porosos: a) Poros paralelos, b) Poros al azar. Difusión superficial. Problemas de aplicación.

Tema X.- Transferencia de materia y de calor en el interior del catalizador: Conductividad térmica efectiva. Relación entre la conductividad térmica del sólido y la conductividad térmica del medio poroso. Factor de efectividad. Definición. Desarrollo de Thiele. Diferentes casos de factor de efectividad para operaciones isotérmicas y no-isotérmicas. Efectos de las resistencias internas sobre la selectividad. Problemas de aplicación.

Tema XI.- Nociones de diseño de reactores catalíticos: Reactores operados en condiciones: a) Isotérmico. b) Adiabático. c) No Isotérmico, no adiabático. Reactores de lecho fijo.

VII - Plan de Trabajos Prácticos

Trabajo Práctico de Laboratorio:

- 1.- "Preparación, caracterización y evaluación de un catalizador".
- 2.- "Purificación de arcillas y talcos mediante calcinación en diferentes atmósferas".

Se desarrollan en la segunda parte de cuatrimestre, la aprobación de los trabajos prácticos de laboratorio será por la presentación y discusión de un informe final de los resultados obtenidos. En la guía de laboratorio se incluyen las Normas de Seguridad.

VIII - Regimen de Aprobación

REGIMEN PARA ALUMNOS REGULARES

- 1. INSCRIPCION: Podrán inscribirse y cursar como regulares aquellos alumnos que hayan regularizado los cursos "Diseño de Reactores Homogéneos" y "Estado Sólido" y aprobado el curso "Fenómenos de Transporte".
- 2. TRABAJOS PRACTICOS: La asistencia a los trabajos prácticos es obligatoria. El alumno deberá aprobar en primera instancia el 80% de los trabajos prácticos, debiendo tener al finalizar el curso el 100% de los mismos aprobados. Este requerimiento es aplicado tanto a los trabajos prácticos de aula como de laboratorio.
- 3. EVALUACIONES PARCIALES Y RECUPERACIONES: Se realizarán 3 (tres) evaluaciones parciales escritas sobre problemas de aula y trabajos prácticos de laboratorio. El alumno tendrá derecho a 2 (dos) recuperación por cada parcial.
- 4. EXAMEN FINAL: Podrán rendir el examen final de la asignatura los alumnos que hayan cursado la presente asignatura y además hayan aprobado el examen final de los cursos "Diseño de Reactores Homogéneos" y "Estado Sólido".

REGIMEN PARA ALUMNOS LIBRES

- 1. Sólo podrán rendir libre la Asignatura aquellos Alumnos que habiéndola cursado, quedaron libres por no aprobar los Parciales.
- 2. El Examen en Condición de Libre está compuesto por:
- a) Una evaluación escrita sobre los Trabajos Prácticos de Aula y Laboratorio. Puntaje para la aprobación: siete (7) puntos.
- b) Si se aprueba la evaluación escrita, se realiza una evaluación oral como alumno regular.

IX - Bibliografía Básica

- [1] Levenspiel "Chemical Reaction Engineering". Reverte, 2005.
- [2] Smith, J.M.- "Ingeniería de la Cinética Química", Mc Graw-Hill, 6ª Ed. 1991.
- [3] Gregg-Sing "Adsorption, Surface Area and Porosity", Academic Press, 2a Ed. 1982.
- [4] De Boer "The Dinamical Character of Adsorption". Oxford University Press. 1968.
- [5] Ross-Oliver "On Physical Adsorption". Interscience Publ., 1964.
- [6] Walas, S.M.- "Reaction Kinetics for Chemical Engineering". Mc Graw-Hill, New York, 1959.
- [7] Hougen O.A. Watson K.M., Ragats R.A. "Chemical Process Principles", Part I, 1954; Part II, 1959; Part III, 1967; Wiley, New York.
- [8] Bird R.B. Steward W.E. Lighfoot E.W. Fenómenos de transporte, Reverté Barcelona 1ª 1978
- [9] Emmett P.H. "Catalysis", Reinhold Publishing, New York, 1954.
- [10] Froment-Bischof "Chemical Reactor Analysis and Design", John Wiley, 1979.
- [11] Le Page "Catalyse on contact". Ed. Techniq., 1978.
- [12] Smith-Van Ness "Introduction to chemical engineering thermodynamics", Mc Graw-Hill, 1975.
- [13] Delannay F.- "Characterization of Heterogeneous Catalysis". Ed. M. Dekker, 1984.
- [14] Habashi, Fathi: "Principles of Extractive Metallurgy". Vol.1, Ed. Gordon and Breach, 1980.
- [15] Fogler, H. Scott. Elementos de ingeniería de las reacciones química 4a ed. México: Pearson, 2008.

X - Bibliografia Complementaria

- [1] Doraiswamy, L.K. and Sharma, M.M. "Heterogeneous Reactions". Ed. John Wiley 1984.
- [2] Carberry, J.; Varma, A. "Chemical Reaction and Reactor Engineering", Ed. Marcel Dekker, 1987.
- [3] Satterfield, Ch. N. "Heterogeneous Catalysis in Industrial Practice". Ed. Mc Graw-Hill, 2da. Ed., 1991.
- [4] Winston, W.S.- Kamalesh, K.S. "Membrane Handbook". Ed. Van Nostrand Reinhold, 1992.
- [5] Masel, Richard I. Chemical kinetics and catalysis ,Wiley-Interscience New York, 1a Ed. 2001
- [6] Chorkendorff, I./ Niemantsverdriet, Concepts of modern catalysis and kinetics, Wiley-VCH GmbH &Co. KGaA
- [7] Weinheim (Alemania), J. W. 2ª 2003

XI - Resumen de Objetivos

Los objetivos generales del curso:

- •El estudio de la teoría básica de las reacciones químicas heterogéneas (catalizadas y no catalizadas) y de las herramientas necesarias que permitan el diseño y adecuado funcionamiento de los reactores químicos, para lo cual se hará uso de conceptos aportados por la termodinámica, la cinética química, la mecánica de los fluidos y los fenómenos de transporte.
- •Aplicación de métodos de interpretación de datos experimentales en el diseño de reactores.
- •Estudio de técnicas de caracterizaciones físico-químicas. Determinaciones de las características estructurales y texturales de

diversos sólidos.

•Determinación de la influencia de las características estructurales y texturales de los catalizadores en la cinética y en el diseño de reactores.

XII - Resumen del Programa

- Tema I.- Adsorción física de gases sobre sólidos.
- Tema II.- Métodos de caracterización de sólidos.
- Tema III.- Caracterización física de sólidos porosos.
- Tema IV.- Reacciones heterogéneas sólido-gas no catalizadas.
- Tema V.- Diseño de reactores para reacciones sólido-gas no catalizadas.
- Tema VI.- Reacciones heterogéneas sólido-gas catalizadas.
- Tema VII.- Expresiones de velocidad para reacciones catalíticas.
- Tema VIII.- Transferencia de materia y calor en la película exterior del catalizador.
- Tema IX.- Difusión en el interior de los catalizadores porosos.
- Tema X.- Transferencia de materia y de calor en el interior del catalizador.
- Tema XI.- Diseño de reactores catalíticos.

XIII - Imprevistos

XIV - Otros

Las 5 horas que restan están distribuidas a lo largo de las 15 semanas del cuatrimestre, en forma no uniforme, dependiendo de la disponibilidad horaria de los alumnos y/o docentes para actividades de seminarios y discusión de resultados de trabajos prácticos de laboratorio.

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		