

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Automatización

(Programa del año 2022)

I - Oferta Académica

Materia	Carrera	Plan Ai	ňo Período
Tecnología Aplicada al Control de Sistemas	ING. MECATRÓNICA	Ord	
		22/12	22 1° cuatrimestre
		-10/2	22 1 cuatrimestre
		2	

Mecatrónicos

II - Equipo Docente

Docente	Función	Cargo	Dedicación
LARREGAY, GUILLERMO OMAR	Prof. Responsable	P.Adj Exc	40 Hs
TORRES, LUIS RAUL	Responsable de Práctico	A.1ra Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	Hs	Hs	Hs	5 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
14/03/2022	24/06/2022	15	75

IV - Fundamentación

En los últimos años se han producido grandes avances y desarrollos en el área de inteligencia computacional, y muchos de ellos han tenido aplicación en campos relacionados a la mecatrónica y al control de accionamientos.

Esto, sumado al vertiginoso desarrollo y miniaturización de componentes electrónicos, y la integración de microprocesadores en la mayoría de los dispositivos de uso común, tiene como consecuencia que muchas tareas de control de máquinas o equipos estén en manos de un sistema electrónico inteligente encargado de tomar decisiones.

Por todo lo anterior, es importante formar en estos temas a los profesionales que en un futuro serán los encargados de crear, mantener y operar sistemas mecatrónicos inteligentes.

V - Objetivos / Resultados de Aprendizaje

Resultados de Aprendizaje:

Que el estudiante:

- diseñe filtros digitales para el acondicionamiento de señales en dispositivos mecatrónicos.
- implemente filtros digitales en un procesador digital de señales para verificar el diseño realizado.

- diseñe controladores basado en lógica difusa para el control de accionamientos mecatrónicos
- implemente redes neuronales artificiales para aplicaciones de clasificación en problemas de ingeniería mecatrónica

VI - Contenidos

1) Proceso digital de señales

Conversión analógica-digital y digital-analógica. Sistemas lineales. Muestreo. Convolución. Propiedades de la convolución. Transformada de Fourier. Implementación de FFT. Proceso de señales contínuas. Filtros digitales.

2) Dispositivos DSP y FPGA

Descripción y funcionamiento de un procesador digital de señal (DSP). Configuración y programación. Adaptación de señales. Depuración de programas. Descripción y funcionamiento de un FPGA. Introducción a los lenguajes de descripción de hardware (VHDL). Programación de hardware y verificación.

3) Sistemas de inferencia difusa

Lógica difusa. Operaciones sobre conjuntos difusos. Inferencia difusa. Dispositivos de inferencia difusa. Desarrollo de sistemas de control difuso. Implementación en simulación. Implementación en dispositivos DSP/FPGA.

4) Redes neuronales artificiales

Introducción y fundamentos. Modelo de neuronas. Arquitecturas de redes neuronales. Modos de operación. Tipos de redes: Supervisadas, Autoorganizadas, otros. Algoritmos de aprendizaje. Entrenamiento de redes neuronales. Aplicaciones. Implementación de redes neuronales en simulación. Implementación en dispositivos DSP/FPGA.

VII - Plan de Trabajos Prácticos

- 1) Proceso digital de señales Implementación en simulación y en hardware de filtros digitales y FFT
- 2) Sistemas de inferencia difusa Diseño e implementación (simulación y hardware) de sistemas de control difuso aplicados a sistemas mecatrónicos
- 3) Redes neuronales artificiales Diseño y simulación de redes clasificadoras y redes aplicadas al control de sistemas mecatrónicos.
- 4) Trabajo final de implementación Implementación de un control completo en hardware utilizando redes neuronales para una aplicación en robótica.

VIII - Regimen de Aprobación

A - METODOLOGÍA DE DICTADO DEL CURSO:

El dictado del curso podrá ser presencial, semi-presencial, o virtual.

En todos los casos, se prevé una clase teórica y una clase práctica semanal, donde esta última podrá ser de práctica de aula o laboratorio dependiendo de los contenidos del programa a dictarse en esa semana en particular.

Los contenidos teóricos y prácticos serán puestos a disposición de los estudiantes a través de la plataforma Google Classroom provista por la UNSL.

B - CONDICIONES PARA REGULARIZAR EL CURSO

Para acceder a la condición de regular, los estudiantes deberán cumplir con los siguientes requisitos:

- Entregar y aprobar con al menos 70 puntos, el 100 % de las actividades prácticas propuestas por el equipo docente.
- Aprobar con al menos 50 puntos el 100% de las evaluaciones parciales prácticas definidas, de acuerdo a la normativa vigente en la UNSL
 - Asistir al menos al 75 % de las clases prácticas de aula y al 100% de las clases prácticas de laboratorio

C – RÉGIMEN DE APROBACIÓN CON EXÁMEN FINAL

El examen final para los estudiantes que se encuentren en condición regular consistirá en una evaluación oral y/o escrita sobre los contenidos teóricos de la asignatura. Los temas se sortearán al azar el día del examen.

D – RÉGIMEN DE PROMOCIÓN SIN EXAMEN FINAL

Para acceder a la condición de regular, los estudiantes deberán cumplir con los requisitos del inciso B, con las siguientes consideraciones:

• Las evaluaciones parciales se deberán aprobar con al menos 75 puntos, que además incluirán contenidos teóricos.

E - RÉGIMEN DE APROBACIÓN PARA ESTUDIANTES LIBRES

El curso no contempla régimen de aprobación para estudiantes libres.

IX - Bibliografía Básica

[1] Signals and systems 2nd edition, A. Oppenheim, A. Willsky, S. Hamid. Pearson, 1996.

[2] Tipo: Libro

[3] Formato: Impreso

[4] Disponibilidad: Biblioteca UNSL Campus Villa Mercedes

[5] The Scientist and Engineer's Guide to DSP. Smith, S. W. California Technical Pub, 1997.

[6] Tipo: Libro

[7] Formato: Digital

[8] Disponibilidad: dspguide.com

[9] Redes neuronales y sistemas difusos 2da edición, B. Martín del Brío, A. Sanz Molina. Editorial Alfaomega, 2005.

[10] Tipo: Libro[11] Formato: Impreso

[12] Disponibilidad: Biblioteca UNSL Campus Villa Mercedes

[13] Neural Networks and Deep Learning, M. A. Nielsen. Determination Press, 2015.

[14] Tipo: Libro[15] Formato: Digital

[16] Disponibilidad: neuralnetworksanddeeplearning.com

X - Bibliografia Complementaria

[1] Neural networks and learning machines 3rd edition, S. Haykin. Pearson/Prentice Hall, 2008.

[2] Tipo: Libro

[3] Formato: Impreso

[4] Redes neuronales & deep learning. F. Berzal. Edición Independiente, 2018.

[5] Tipo: Libro[6] Formato: Digital

XI - Resumen de Objetivos

- diseñar filtros digitales.

- implementar filtros digitales en un procesador digital de señales.

- diseñar controladores basados en lógica difusa

- implementar redes neuronales artificiales

XII - Resumen del Programa

1) Proceso digital de señales

2) Dispositivos DSP y FPGA

3) Sistemas de inferencia difusa

4) Redes neuronales artificiales

XIII - Imprevistos

El régimen de promoción puede verse afectado en el caso de no poder llevar a cabo el 100% de las clases prácticas de aula y de laboratorio.