

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Automatización

(Programa del año 2022)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período	
Robótica Industrial II		Ord			
	ING. MECATRÓNICA	22/12	2022	1° cuatrimestre	
		-10/2			
		2			

II - Equipo Docente

Docente	Función	Cargo	Dedicación
AVILA, LUIS OMAR	Prof. Responsable	P.Adj Exc	40 Hs
TRABES, EMANUEL	Prof. Colaborador	P.Adj Simp	10 Hs
PINNA GONZALEZ, LUIS FEDERICO	Responsable de Práctico	A.1ra Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
4 Hs	2 Hs	2 Hs	2 Hs	6 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
14/03/2022	24/06/2022	15	90	

IV - Fundamentación

Robótica Industrial 2 es una asignatura de la carrera de Ingeniería Mecatrónica ubicada en el área del espacio curricular de las denominadas tecnologías aplicadas. Es la base para el diseño, desarrollo y control de robots antropomorfos y móviles. Su inclusión en la currícula de la carrera contribuye a la formación integral del alumno de forma tal que adquiera los contenidos necesarios para que, en su futuro profesional como Ingeniero en Mecatrónica, se comporte con sentido crítico e innovador en la problemática particular de los sistemas robóticos y presente respuestas originales con alternativas eficientes de solución en la toma de decisiones profesionales.

V - Objetivos / Resultados de Aprendizaje

Resultados de Aprendizaje

Que el estudiante sea capaz de:

- Analizar los fundamentos teóricos, técnicas y herramientas necesarias para el análisis de posiciones, velocidades,

aceleraciones y fuerzas en robots manipuladores con el objetivo de determinar los pares aplicados en estado de equilibrio.

- Calcular las ecuaciones de movimiento de robots manipuladores para determinar su modelo dinámico considerando los métodos de Newton-Euler y Lagrange-Euler.
- Calcular ecuaciones de control de movimiento de robots manipuladores para determinar posiciones y trayectorias en considerando su respuesta dinámica.
- Desarrollar modelos cinemáticos en robots móviles para control de navegación.

VI - Contenidos

Unidad Temática Nº 1: Introducción a los sistemas robóticos

El origen de los sistemas robóticos. Definiciones. Movimientos en el robot. Descripciones espaciales. Transformada homogénea.

Unidad Temática Nº 2: Velocidades y fuerzas estáticas

Posiciones y orientaciones en el tiempo. Análisis de velocidad de cuerpos rígidos. Movimiento de los vínculos de un robot. Propagación de la velocidad. Jacobianos. Fuerzas estáticas.

Unidad Temática Nº 3: Modelo dinámico de robots manipuladores

Aceleración de un cuerpo rígido. Distribución de masas en los eslabones. Formulación iterativa de Newton-Euler. Formulación de Lagrange. Ecuaciones de movimiento. Ecuación en el espacio de estado.

Unidad Temática Nº 4: Control de robots manipuladores

Conceptos de control. Control de posición. Control de trayectoria. Control por interacción.

Unidad Temática Nº 5: Robótica móvil

Configuraciones de robots móviles. Tipos de ruedas y restricciones. Análisis cinemático y dinámico. Control de robots móviles. Sensores.

VII - Plan de Trabajos Prácticos

Resolución de problemas: Se entregará una guía de trabajos prácticos con ejercicios correspondientes a los temas desarrollados en las clases teóricas.

Los temas a desarrollar serán:

- 1- Análisis de fuerzas en el robot
- 2- Modelado dinámico
- 3- Control de manipuladores
- 4- Robótica Móvil

Trabajo de laboratorio: Se realizarán trabajos de laboratorio relacionado al control y calibración de posición de un robot antropomorfo de tipo industrial considerando las normas de higiene y seguridad pertinentes.

VIII - Regimen de Aprobación

A - METODOLOGÍA DE DICTADO DEL CURSO:

Metodología de dictado y aprobación de la asignatura: Clases teóricas, prácticas y de laboratorio.

Se tomarán dos exámenes parciales, con sus respectivos recuperatorios, que buscarán recoger evidencia sobre los contenidos adquiridos durante el desarrollo de los trabajos prácticos.

Los contenidos teóricos y prácticos serán puestos a disposición de los estudiantes a través de la plataforma Google Classroom provista por la universidad.

B - CONDICIONES PARA REGULARIZAR EL CURSO

Asistencia al 70 % de las clases teóricas.

Asistencia al 70 % de las clases prácticas de laboratorio.

Aprobación del 100% de los trabajos prácticos de aula.

Aprobación con 60% los exámenes parciales.

C – RÉGIMEN DE APROBACIÓN CON EXÁMEN FINAL

El alumno será evaluado en un examen final oral sobre los temas teóricos que solicite el tribunal.

D – RÉGIMEN DE PROMOCIÓN SIN EXAMEN FINAL

Asistencia al 70 % de las clases teóricas.

Asistencia al 70 % de las clases prácticas de laboratorio.

Aprobación del 100% de los trabajos prácticos de aula.

Aprobación del 100% de los informes de laboratorio.

Aprobación con 70% los exámenes parciales.

E – RÉGIMEN DE APROBACIÓN PARA ESTUDIANTES LIBRES

El curso no contempla régimen de aprobación para estudiantes libres.

IX - Bibliografía Básica

[1] Robótica, J. Craig, Pearson, 2006. Tipo: libro. Formato: impreso. Disponibilidad: disponible en el área.

[2] Robótica: control de robots manipuladores, F. Reyes Cortes, Alfaomega, 2011. Tipo: libro. Formato: impreso. Disponibilidad: disponible en el área.

[3] Control de movimientos de robots manipuladores, R. Kelly y V. Santibañez, Pearson, 2003. Tipo: libro. Formato: impreso. Disponibilidad: disponible en el área.

X - Bibliografia Complementaria

[1] Robótica: Manipuladores y robots móviles, Ollero Baturone, Alfaomega, 2001. Tipo: libro. Formato: digital. Disponibilidad: disponible en el área.

[2] Fundamentos de robótica, A. Barrientos et al., McGraw Hill, 2007. Tipo: libro. Formato: digital. Disponibilidad: disponible en el área.

XI - Resumen de Objetivos

- Analizar los fundamentos teóricos, técnicas y herramientas necesarias para el análisis de posiciones, velocidades, aceleraciones y fuerzas en robots manipuladores.
- Calcular las ecuaciones de movimiento de robots manipuladores.
- Calcular ecuaciones de control de movimiento de robots manipuladores.
- Desarrollar modelos cinemáticos en robots móviles.

XII - Resumen del Programa

Unidad Temática Nº 1: Introducción a los sistemas robóticos

Unidad Temática Nº 2: Velocidades y fuerzas estáticas

Unidad Temática Nº 3: Modelo dinámico de robots manipuladores

Unidad Temática Nº 4: Control de robots manipuladores

Unidad Temática Nº 5: Robótica móvil

XIII - Imprevistos

Para el caso de medidas de fuerza que alteren sustancialmente el dictado de la asignatura, se implementarán sistemas de autoestudio y consultas mediante la utilización de plataformas on-line.

XIV - Otros