

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Informatica

(Programa del año 2021) (Programa en trámite de aprobación) (Presentado el 23/09/2021 10:48:48)

Area: Area III: Servicios

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
(OPTATIVA) INTRODUCCION A LA	LIC.CS.COMP.	32/12 2021	2021	2° cuatrimestre
COMPUTACION GRAFICA	LIC.CS.COMP.		2021	

II - Equipo Docente

Docente	Función	Cargo	Dedicación
GUERRERO, ROBERTO ARIEL	Prof. Responsable	P.Asoc Exc	40 Hs
RODRIGUEZ COPA, GRACIELA BEATR	Auxiliar de Práctico	A.1ra Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	3 Hs	Hs	3 Hs	6 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
23/08/2021	26/11/2021	14	75

IV - Fundamentación

Los avances tecnológicos, han convertido a las computadoras en una poderosa herramienta para la generación de imágenes, y por medio de ellas, para la transmisión de información visual en prácticamente cualquier área de trabajo: ciencia, ingeniería, industria, etc..

La Computación Gráfica es un campo floreciente dentro de las Ciencias de la Computación en el cual se estudian los métodos que permiten sintetizar y manipular digitalmente información de contenido visual.

La asignatura introduce los conceptos fundamentales de la graficación por computadora en 2D y 3D. Se desarrollan aspectos teóricos asociados al plasmado de primitivas geométricas, modelado de objetos, transformaciones en 2D y 3D, teoría del color, procesamiento de imágenes, y pipeline de rendering.

V - Objetivos / Resultados de Aprendizaje

Se pretende formar al alumno en los diversos aspectos involucrados con la presentación gráfica de la información de manera que pueda:

- Adquirir los conocimientos básicos necesarios para comprender el proceso completo de representación de información en forma gráfica en la computadora.
- Generar software de representación gráfica propio.
- Analizar, evaluar y detectar limitaciones en el software de modelado y animación 3D existente en el mercado.
- Desarrollar una visión general de las potencialidades y limitaciones de la Informática Gráfica en la actualidad.

VI - Contenidos

Unidad I: Introducción.

¿Que es la Computación Grafica?. Evolución de la Computación Gráfica. Aplicaciones representativas de la Computación Gráfica.

Ventajas y Desventajas. Desarrollo del hardware y software para Computación Gráfica.

Unidad II: Dispositivos Gráficos.

Tecnología de Ingreso de Información: teclado, ratón (Mouse), dispositivos evaluadores, etc.. Tecnología de Egreso de Información:

impresoras, plotters, monitores, etc.. Graficación vectorial. Graficación Raster. Concepto de Frame Buffer. Conceptos Básicos de

procesamiento de interacción: eventos.

Unidad III: Color.

Introducción a la teoría del color. Luz Acromática. Luz Cromática. Modelos de color para dispositivos raster. Ventajas y desventajas.

Uso del color en computación gráfica. Aspectos psicológicos del color en el desarrollo de interfaces.

Unidad IV: Imágenes Raster.

Concepto de Pixel. Representación de las imágenes. Operaciones: lógicas, funcionales, aritméticas. Estados del procesamiento de imágenes. Operaciones pixel a pixel: evaluaciones, mapeos, combinaciones, filtros.

Unidad V: Conceptos Básicos de Procesamiento de Imágenes.

Las imágenes como funciones. Concepto de Muestreo. Dominio espacial y dominio de la frecuencia. Transformada de Fourier. La función Delta Dirac. Convolución. Filtrado: pasa bajo, pasa alto, pasa banda. Efectos visuales: Aliasing. Reconstrucción de imágenes por filtrado.

Unidad VI: Graficación de Primitivas 2D.

Implicaciones del uso de arquitectura raster. Línea de proceso (Pipeline) de salida de información. Primitivas graficas de salida.

Puntos y líneas. Circunferencias. Algoritmos de generación por punto: el algoritmo del punto medio. Primitivas de área. Rellenado de polígonos. Rellenado de Áreas. Antialising.

Unidad VII: Modelado de Objetos.

Representación de objetos en 3D. Métodos de representación: Poligonal, Parches Paramétricos Bi-cúbicos, Geometría Sólida Constructiva, Subdivisión de Espacios. Ventajas y Desventajas. Técnicas de recolección de datos manuales y automáticas. Técnicas matemáticas de generación de puntos.

Unidad VIII: Transformaciones Geométricas.

Preliminares matemáticos. Transformaciones 2D. Coordenadas homogéneas y representación matricial. Composición de Transformaciones 2D. Representación matricial de transformaciones 3D. Composición de transformaciones 3D.

Unidad IX: Visualización en 3D.

El concepto de cámara sintética. Concepto de Proyecciones. Proyecciones Paralelas. Proyecciones Perspectiva. Especificación de un punto arbitrario de visualización. Matemática de Proyecciones Geométricas Planares. Implementación de las Proyecciones Geométricas Planares. Pipeline de Visualización: Transformación, Proyección, Volumen Canónico, Recorte (Clipping), Ventana de Visualización (Viewport).

VII - Plan de Trabajos Prácticos

Con el objetivo de evaluar a cada alumno en un proceso continuo, los trabajos se realizan en forma individual y personalizados.

Los trabajos prácticos aumentan su complejidad en la medida que se avanza con el programa, apoyados en los conocimientos vertidos e integrados en forma cualitativa con el aprendizaje.

El seguimiento por parte de los docentes es permanente durante el desarrollo de las prácticas.

Los trabajos de laboratorio se construyen uno sobre otro, por lo que será necesario reusar el código desarrollado en trabajos previos.

T.P: No 1: Dispositivos.

T.P: No 2: Procesamiento de Pixmaps.

T.P: No 3: Proyecto integrador: Pintado.

T.P: No 4: Transformaciones y Mallas Poligonales.

T.P: No 5: Proyecto integrador: Pipeline de Visualización.

VIII - Regimen de Aprobación

Los conceptos de la asignatura se integran mediante el desarrollo de trabajos prácticos de máquina y proyectos integradores de laboratorio. Se entiende por práctico de máquina a todo práctico que involucre programación. Sólo los proyectos integradores tienen evaluación, debiendo entregarse y aprobarse en la fecha fijada por la cátedra o en una fecha de recuperación. Los proyectos integradores deberán realizarse en forma individual.

Condiciones Generales

- Asistencia al 70% de las clases practicas.
- Haber cumplido con las entregas de trabajos prácticos solicitados por los profesores.
- Aprobar los 2 proyectos integradores y sus correspondientes recuperaciones acorde con la normativa vigente.

Régimen de Regularización

- Cumplir con las condiciones Generales.

Régimen de Promoción

- Cumplir con las condiciones Generales.
- Aprobar una evaluación adicional teórica a fin de cuatrimestre sobre todos los conceptos abordados durante el dictado de la asignatura. Dicha evaluación se debe aprobar con un mínimo del 80%. El porcentaje obtenido se traducirá en nota la cual será la nota definitiva de la materia según la normativa vigente.

Régimen de Alumnos Libres

Dado el carácter netamente práctico de la asignatura, la materia no se puede rendir en calidad de libre.

IX - Bibliografía Básica

- [1] Apuntes de la cátedra.
- [2] Hughes, J., Van Dam, A., McGuire, M., Sklar, D., Foley J., Feinier, S., Akeley, K., "Computer Graphics: Principles and Practice", Ed. Addison-Wesley, ISBN-13: 978-0-321-39952-6 ISBN-10: 0-321-39952-8, 2014.
- [3] Foley, J., Van Dam, A., Feinier, S., Hughes, J., "Computer Graphics: Principles and Practice in C", Ed. Addison-Wesley, ISBN-10: 0201848406, 1997.
- [4] Foley, J., Van Dam, A., "Fundamentals of Interactive Computers Graphics", Ed. Addison-Wesley, Reading, Massachussetts, segunda edición, ISBN-10:0201144689, 1992.
- [5] Hearn, D., Baker, P., "Gráficas por computadora", Ed. Prentice-Hall Hispanoamericana, México, ISBN-10: 9688804827, 1995.
- [6] Dix, A., Finley, J., Abowd, G., y Beale, R., "Human-Computer Interaction", 3thd edition, Ed. Prentice Hall, ISBN-10: Página 40130461091, 2004.
- [7] Ortega Cantero, M., Bravo Rodríguez, J., "Sistemas de Interacción Persona-Computador", Ed. Univ. de Castilla-La Mancha, ISBN:84-8427-093-9, 2001.
- [8] Gonzalez R., Woods R., "Digital Image Processing", 2nd. Edition, Ed. Prentice Hall, ISBN: 0-201-18075-8, 2006.
- [9] Rule, K., "3D Graphics File Formats", Addison Wesley, ISBN: 0-201-48835-3, 1996.
- [10] Woo, M., Neider, J., Davis, T., Shreiner, D., "OpenGL- Programming Guide (Red Book)", 2nd. Edition, Addison Wesley, ISBN:0-201-60458-2, 1999.
- [11] Angel E., "Interactive Computer Graphics A Top-Down Approach Using OpenGL", Addison Wesley, ISBN-10:

0321321375, 2006.

- [12] Egerton, P.A., Hall, W. S, "Computer Graphics Mathematical First Step", Prentice Hall, ISBN-10: 0135995728, 1999.
- [13] Jones, H., "Computer Graphics Through Key Mathematics", Springer-Verlag, ISBN-10: 1852334223, 2001.
- [14] Isaac Kerlow, "The Art of 3D: Computer Animation and Imaging", John Wiley & Sons, ISBN: 978-0-470-08490-8, 2009.

X - Bibliografia Complementaria

- [1] Oualline, S., "Practical C Programming", Ed. O ́ Reilly & Associates, ISBN 10: 1-56592-306-5, 1997.
- [2] Matthew, N., Stones, R., "Beginning Linux programming", John Wiley & Sons, ISBN-10: 0470147628, 2007.
- [3] Glassner A., "Graphics Gems", Academic Press, ISBN-10: 0122861663, ISBN-13: 978-0122861666, 1993.
- [4] Arvo J., "Graphics Gems II", Academic Press, ISBN-10: 0120644819, ISBN-13: 978-0120644810, 1991.
- [5] Kirk David, "Graphics Gems III", Academic Press, ISBN-10: 0124096735, ISBN-13: 978-0124096738, 1994.
- [6] Heckbert Paul, "Graphics Gems IV", Academic Press, ISBN-10: 0123361559, ISBN-13: 978-0123361554, 1994.
- [7] Paeth Alan, "Graphics Gems V", Academic Press, ISBN-10: 0125434553, ISBN-13: 978-0125434553, 1995.

XI - Resumen de Objetivos

Se pretende:

- Introducir al alumno en el ámbito de la Computación Gráfica y sus aplicaciones.
- Integrar el hardware con conceptos gráficos y técnicas básicas de procesamiento de objetos bi y tri-dimensionales.
- Desarrollar un entorno de Manipulación y Visualización de escenarios de 2D y 3D

XII - Resumen del Programa

- Introducción al Hardware Gráfico.
- Almacenamiento y Procesamiento de Imágenes
- Teoría del Color.
- Manipulación de Objetos 2D.
- Modelado 3D
- Transformaciones Geométricas.
- Visualización 3D

XIII - Imprevistos

Ante las medidas nacionales y universitarias tomadas por la declaración de pandemia del COVID-19, la materia se dicta de manera virtual mediante plataforma Classroom, Zoom y Jitsi, y con evaluaciones presenciales.

Los alumnos desarrollan los prácticos de máquinas en sus casas mediante el uso de software libre y práctica en papel, pudiendo cumplir con todo lo requerido para la aprobación de la materia.

El seguimiento continuo se realiza a través de reuniones virtuales periódicas y entrega de ejercicios prácticos resueltos.

El regimen de evaluaciones se adaptará acorde a las circunstancias. La evaluación parcial será personalizada para cada alumno.

Según Resolución 1404/21 el Segundo Cuatrimestre de 2021 posee 14 semanas. A los efectos de poder impartir todos los contenidos respetando el crédito horario establecido para la asignatura en el Plan de estudios de la carrera, es que se fija un crédito horario máximo 6 hs. por semana, distribuidas entre horas de teorías, prácticos de aula, laboratorios, trabajos tutoriales, consultas; hasta completar las 75hs totales de la asignatura.

El presente programa puede presentar ajustes dada la situación epidemiológica por COVID919. Toda modificación será acordada y comunicada con el estudiantado e informada a Secretaría Académica. email de contacto: rag@unsl.edu.ar

XIV - Otros

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA	
	Profesor Responsable
Firma:	
Aclaración:	
Fecha:	