

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Quimica Area: Qca Analitica

(Programa del año 2021) (Programa en trámite de aprobación) (Presentado el 21/10/2021 20:58:20)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
TECNICAS INSTRUMENTALES II	ANAL. QUÍMICO	13/12 -CD	2021	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
GONZALEZ, SILVIA PATRICIA	Prof. Responsable	P.Asoc Exc	40 Hs
KURINA SANZ, MARCELA BEATRIZ	Prof. Colaborador	P.Tit. Exc	40 Hs
RETA, GUILLERMO FEDERICO	Prof. Co-Responsable	P.Adj Exc	40 Hs
BAZAN, CRISTIAN ROBERTO	Responsable de Práctico	JTP Simp	10 Hs
GUTIERREZ, EDUARDO LUCIANO	Responsable de Práctico	JTP Exc	40 Hs
VALLEJO AZAR, NICOLAS KARIM	Auxiliar de Laboratorio	A.1ra Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
4 Hs	Hs	Hs	4 Hs	8 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
23/08/2021	26/11/2021	14	120

IV - Fundamentación

El curso contribuye a la formación de los alumnos en las técnicas instrumentales de análisis. Estas técnicas, sumadas a las técnicas analíticas clásicas, son las herramientas que permitirán al futuro profesional los análisis de distintos especies químicas en diversas muestras. El curso se divide en dos secciones:

Parte 1

Los métodos electroanalíticos comprenden un grupo de métodos analíticos basados en las propiedades eléctricas de una disolución del analito cuando forma parte de una celda electroquímica. Los métodos electroanalíticos tienen ciertas ventajas sobre otros tipos de métodos instrumentales de análisis. En primer lugar, las medidas electroanalíticas son a menudos específicas para un estado de oxidación particular de un elemento (especiación), la segunda ventaja importante es que la instrumentación requerida para su aplicación es relativamente de bajo costo y una tercera característica importante de estos métodos es la miniaturización que permiten trabajar con volúmenes de solución muy pequeños y la fabricación de una amplia gama de sensores electroquímicos.

Parte II

La identificación de compuestos orgánicos desconocidos a través de métodos físicos ha evolucionado notablemente en las últimas décadas y ha transformado su conocimiento en una herramienta indispensable en la formación de profesionales dedicados al análisis químico y carreras afines. Los métodos espectroscópicos más habituales en la identificación de compuestos orgánicos, que incluso encuentran aplicación en otras ramas del conocimiento (como la medicina, por ejemplo) se actualizan día a día y el conocimiento de sus fundamentos resulta indispensable para que los profesionales puedan utilizar dichos avances, en conjunto con los conocimientos químicos fundamentales, para desarrollar su tarea en los distintos campos ocupacionales.

V - Objetivos / Resultados de Aprendizaje

En el presente curso se pretende dar un conocimiento específico sobre las técnicas electroanalíticas y espectrometricas con su aplicación a distinto tipo de análisis.

En primer lugar se introduce al alumno en los conceptos elementales de electroquímica que permiten comprender el desarrollo de las distintas técnicas utilizadas para medidas directas de concentración, y de aquellas utilizadas como indicadoras del punto final en distinto tipo de volumetrías.

Tambien se pretende que el alumno adquiera las habilidades necesarias para poder realizar la interpretación, orientada a la dilucidación estructural de compuestos orgánicos, de registros espectrales de Ultravioleta, Infra-Rojo, H-NMR, 13C-NMR, y Espectrometría de Masas.

VI - Contenidos

PARTE I

TEMA 1:

Métodos Electroanalíticos. Definición de celda electroquímica. Celdas galvánicas y electrolíticas. Representación esquemática de celda. Potenciales de celdas. El potencial de electrodo. Potencial estándar de electrodo. Medidas de potencial. Potencial de junta liquida. Su vinculación con las concentración de las especies electroactivas. Ecuación de Nerst. Tipos de electrodos. Electrodos de referencia. Electrodos indicadores. Electrodos metálicos de primera, segunda y tercera especie. Electrodos redox. Electrodos de membrana, electrodos selectivos de iones. Electrodos sensibles a moléculas. Electrodo de gases. Biosensores

TEMA 2:

Corrientes en las celdas electroquímicas. Corrientes faradaícas y no faradaícas. Transporte de masa en la celda electroquímica. Curvas corriente-potencial. Polarizacion por concentración. Métodos Electroanalíticos. Clasificación. Potenciometrías directas. Titulaciones potenciométricas. Aplicaciones.

TEMA 3

Conductimetrías. Medida de conductividad. Titulaciones conductimétricas. Aplicaciones. Métodos electrogravimétricos. Electrogravimetría sin control de potencial del electrodo de trabajo. Electrogravimetría de potencial de cátodo (ánodo) controlado (método potenciostático). Instrumentación. Aplicaciones. Métodos coulombimétricos: Coulombimetría Potenciostática. Columbimetría Amperostática o Titulación Coulombimétrica: Ventajas. Instrumentación. Aplicaciones.

TEMA 4

Voltamperometrías. Celdas voltamétricas. Electrodos indicadores: gotero de mercurio, sólidos, químicamente modificados, de enzimas y ultramicroelectrodos. Voltametría a corriente contínua: de barrido lineal (polarografía). Aplicaciones. Titulaciones amperométricas. Aplicaciones.

PARTE II

TEMA 1

ESPECTROSCOPÍA de ULTRAVIOLETA y VISIBLE: Generalidades. Transiciones electrónicas. Leyes de Lambert y Beer. Aplicaciones a compuestos orgánicos.

TEMA 2

ESPECTROSCOPÍA DE INFRARROJO. Generalidades. Modos normales de vibración. El espectro rotacional - vibracional. Absorción y momento dipolar. Frecuencias de grupo.

TEMA 3

ESPECTROSCOPÍA DE INFRARROJO. Aplicaciones generales en compuestos orgánicos. Generalizaciones. Influencias de efectos inductivos y mesomeros.

TEMA 4

ESPECTROSCOPÍA DE INFRARROJO. Análisis espectral de IR. Problemas de aplicación.

TEMA 5

ESPECTROMETRÍA DE RESONANCIA MAGNÉTICA NUCLEAR DE HIDROGENO-1. El fenómeno de RMN.

Corrimiento químico. Aplicaciones en compuestos orgánicos.

TEMA 6

ESPECTROSCOPÍA DE RESONANCIA MAGNÉTICA NUCLEAR DE HIDROGENO-1. Interacciones espín - espín.

Aplicaciones en compuestos orgánicos. Obtención de los valores de corrimientos y constantes de acoplamiento.

TEMA 7

ESPECTROSCOPÍA DE RESONANCIA MAGNÉTICA NUCLEAR DE HIDROGENO-1. Manejo de tablas y bibliografía de RMN. Problemas combinados con información química.

TEMA 9

ESPECTROSCOPÍA DE RESONANCIA MAGNÉTICA NUCLEAR DE CARBONO -13. Generalidades. Desacoplamientos parciales y totales. Desacoplamiento. Aplicaciones

TEMA 10

ESPECTROSCOPÍA DE RESONANCIA MAGNÉTICA NUCLEAR DE CARBONO -13. Aplicaciones sobre compuestos orgánicos. Manejo de tablas. Problemas combinados con otras técnicas espectrométricas.

TEMA 11

ESPECTROSCOPÍA DE MASAS. Fundamentos y ecuaciones básicas . Generalidades

TEMA 12

ESPECTROSCOPÍA DE MASAS. Iones moleculares, fragmentos isotópicos. Abundancias. Análisis de trazas.

TEMA 13

ESPECTROSCOPÍA DE MASAS. Técnicas de determinación y su composición por estudios isotópicos de alta resolución.

Uso combinado de información en EM, RMN, e IR en el análisis de muestras orgánicas.

TEMA 14

ESPECTROSCOPÍA DE MASAS. Fragmentaciones y reordenamientos en EM de compuestos orgánicos. Generalidades

VII - Plan de Trabajos Prácticos

PARTE I

TPL1: Clase de Problemas.(4hs)

TPL1: Pilas y Electrodos. Celda de Daniel. Pilas de aireación diferencial.(4hs)

TPL2: Potenciometría I: Titulaciones Potenciométricas Manuales.(4hs.)

TPL3: Potenciometría II: Potenciometría Directa, Medidas de pH, p-ión (pF). Potencial Redox. Titulaciones Potenciométricas Automáticas.(4hs)

TPL4: Conductimetría. Titulaciones Conductimétricas.(4hs)

PARTE II

TRABAJOS DE AULA: Resolución de aproximadamente 50 problemas de dilucidación estructural, empleando información de UV, IR, RMN-H-1, RMN-C-13, EM e información química. (4 hs semanales)

NORMAS GENERALES DE HIGIENE Y SEGURIDAD

Usar guardapolvo con puños, entallados y a la altura de la rodilla, de preferencia de algodón.

Usar protección para los ojos tales como lentes de seguridad, guantes apropiados

No se permitirá la entrada al laboratorio con: faldas, pantalones cortos, medias de nylon, zapatos abiertos y cabello largo suelto.

No comer, beber, ni fumar en los lugares de trabajo.

Trabajar con ropa bien entallada y abotonada.

Mantener las mesas siempre limpias y libres de materiales extraños (traer repasador).

Colocar materiales peligrosos alejados de los bordes de las mesas.

Arrojar material roto sólo en recipientes destinados a tal fin.

Limpiar inmediatamente cualquier derrame de producto químico.

Mantener sin obstáculo las zonas de circulación y de acceso a las salidas y equipos de emergencia.

Informar en forma inmediata cualquier incidente al responsable de laboratorio.

Antes de retirarse del laboratorio deben lavarse las manos.

NORMAS PARTICULARES

Para tomar material caliente usar guantes y pinzas de tamaño y material adecuados.

Colocar los residuos, remanentes de muestras, etc. en recipientes especialmente destinados para tal fin.

Rotular los recipientes, aunque sólo se utilicen en forma temporal.

No pipetear con la boca ácidos, álcalis o productos corrosivos o tóxicos

MANEJO DE SOLVENTES, ÁCIDOS Y BASES FUERTES

Abrir las botellas con cuidado y de ser posible, dentro de una campana.

Los ácidos y bases fuertes deben almacenarse en envases de vidrio perfectamente tapados y rotulados, lejos de los bordes desde donde puedan caer.

No apoyar las pipetas usadas en las mesas.

No exponer los recipientes al calor.

Trabajar siempre con guantes y protección visual.

Para la dilución de ácidos añadir lentamente el ácido al agua contenida en el matraz, agitando constantemente y enfriando si es necesario.

Antes de verter ácido en un envase, asegurarse de que no esté dañado.

Si se manejan grandes cantidades de ácidos tener a mano bicarbonato de sodio.

Si le cae por accidente sobre piel un solvente, ácido o álcali, inmediatamente lávese con abundante agua y busque atención.

VIII - Regimen de Aprobación

El programa de la asignatura se desarrolla básicamente con los siguientes métodos de enseñanza: clases teóricas, trabajos prácticos de laboratorio y trabajos prácticos de aula.

La asignatura se podrá cursar como REGULAR O PROMOCIONAL

Régimen para alumnos regulares

Para obtener la regularidad de la asignatura, además de los parciales, será necesario aprobar el 100% de las prácticas de laboratorio.

El alumno deberá asistir como mínimo al 75 % de las clases teórico-prácticas.Las prácticas de laboratorio serán evaluadas mediante un cuestionario escrito y una evaluación continua, en la que se dará especial importancia a los resultados obtenidos, así como a la elaboración de un informe escrito en el cuaderno de laboratorio, incluyendo una breve introducción, resultados, gráficos y conclusiones. Para aprobar los trabajos prácticos el alumno deberá responder correctamente el 60 % de las preguntas que se le realicen en un cuestionario.El alumno tiene la posibilidad de recuperar cada cuestionario una vez. Se realizarán dos exámenes parciales (Parte I y Parte II) con las temáticas desarrolladas en los prácticos de laboratorio y de aula. Para la aprobación de los exámenes parciales el alumno deberá tener una calificación de 7 (siete) puntos en una escala de 1 (uno) a 10 (diez), contando con dos instancias de recuperación para cada parcial de acuerdo a la OCS: 32/14.

Régimen para alumnos promocionales

La asistencia a las clases teóricas será obligatoria entre el 100-80 % para los alumnos en condiciones de promocionar. Se tomaran dos evaluciones de Promoción integradoras de teoría (Parte I y Parte II), el alumno deberá aprobar uno de los dos parciales integradores de teoría en primera instancia. La nota de aprobación para los parciales de promoción no podrá ser inferior a 8 (ocho).

Dadas las características del curso y considerando que la realización de la parte experimental resulta esencial para la formación de los alumnos, se podrá rendir en condición de alumno libre si el alumno realiza y aprueba todos los trabajo prácticos laboratorios y problemas.

IX - Bibliografía Básica

- [1] David Harvey. "Modern Analytical Chemistry". Ed. McGraw-Hill Higher Education. 2005
- [2] Ewing, G.W. (Ed.), "Analytical Handbook Instrumentation", Marcel Dekker, New York, 1997.
- [3] Kellner, R., Mermett, M., Otto, M., Widmer, H.M. (Eds.), "Analytical Chemistry", Wiley-VCH, Weinheim, 1998.
- [4] Koryta, Jiry, Ions, electrodes and membranes, John Wiley and Sons, 1991
- [5] Pingarrón J.M. y Sánchez Vatanero P. "Química electroanalítica". Fundamentos y aplicaciones" Editorial Síntesis, Madrid, 1999.
- [6] Sanchez Botanero, P, Química Electroanalítica, Fundamentos y Aplicaciones, De. Alhambra, 1984.

- [7] Settle, F. Hand Book of Instrumental Techniques For Analytical Chemistry. 2004
- [8] Skoog D.A. y Leary J.J.. "Análisis instrumental" McGraw-Hill, Madrid, 1996.
- [9] Skoog, Douglas A., Holler, F. James, Nieman, Timothy A., Martín Gómez, María del Carmen, Principios de análisis instrumental, 5ª ed. McGraw-Hill, 2003
- [10] Skoog, Douglas A., Holler, F. James, Crouch, Stanley R Principles of instrumental analysis 6^a ed. Thomson Brooks-Cole, 2007.
- [11] Skoog, Douglas A., Holler, F. James, Crouch, Principio del Análisis Instrumental 6ª ed.CEncage Learning, 2011.
- [12] Stockwell, P.B. y Corns, W.T., "Automatic Chemical Analysis", Taylor & Francis, London, 1996.
- [13] Valcárcel M. y Luque de Castro, M.D., "Automatic Methods of Analysis in Techniques and Instrumentation in Analytical Chemistry". Elsevier, Amsterdam, 1988.
- [14] Vassos B.H. y Ewing G.W. "Electroquímica analítica" Limusa, México D.F. 1987.
- [15] Willard H.H., Merritt L.L., Dean J.A. y Settle F.A.. "Métodos instrumentales de análisis" Grupo Editorial Iberoaericana, Belmont, CA, (USA), 1991.
- [16] HESSE, MEIER & ZEEH, Métodos espectroscópicos en Química Orgánica; Ed. Sintesis; 1999
- [17] PASTO-JOHNSON; Organic Structure Determination; Prentice Hall.-
- [18] DYER; Aplications of Absorption Spectroscopy of Organic Compounds; Prentice Hall.-
- [19] SILVERSTEIN-BASSLER; Spectrometric Identification of Organic Compounds; J.Wiley, 1994.-
- [20] SEIBL J.; Espectrometría de Masas; Ed. Alhambra, 1973.-
- [21] WILLIAMS-FLEMING; Métodos Espectroscópicos en Química Orgánica; Urmo, 1968.-
- [22] GOTTLIEB; Introducción a la Espectrometría de Masas de Substancias Orgánicas; Monografía de OEA.-
- [23] LEVY C. and NELSON G. L.; Resonancia Magnética Nuclear de C-13 para Químicos Orgánicos; E.Bellaterra,1976.-

X - Bibliografia Complementaria

- [1] Bard, A.; Faulkner, L Electrochemical Methods. Fundamentals and Aplication. 2da Edition. Jhon Wiley and Sons. 1998.
- [2] [2] Bard, A.; Parso, R. and Jordan, J. "Standard Potential in Aqueous Solutions". Ed Marcel Dekker, Inc. New York, 1985.
- [3] Browning, D.R. "Electrometric methods" McGraw-Hill, London (UK) 1969.
- [4] Costa, J. "Fundamentos de Electródica". Ed. Alhambra. 1981
- [5] Christian, G.D., "Analytical Chemistry", 5ª ed., Wiley, New York, 1994.
- [6] COLTHUP, Daly and Wiberley; Introduction to Infrared and Raman Spectroscopy; Acad. Press.
- [7] Mc LAFFERTY; Interpretación de los Espectros de Masas; Ed. Reverté, 1969.
- [8] NAKANISHI; Infrared Absorption Spectroscopy; Holden Day.-
- [9] RAO; Chemical Aplications Infrared Spectroscopy; Acad.Press.
- [10] SCHEINMAN; An Introduction to Spectroscopy Methods; V.1 y V.2; Acad.Press, 1970.
- [11] JACKMAN-STERNELL; Aplications of NMR in Organic Chemistry; Acad. Press, 1969.
- [12] ALLINGER; Topics in Stereochemistry; Interscience, 1966.-
- [13] ALLINGER; Química Organica; Reverté, 1971.
- [14] MORRISON; Organic Chemistry; Allyn and Bacon, 1971.
- [15] DEROME, A.E.; Modern NMR Techniques for Chemistry Research, 1987.

XI - Resumen de Objetivos

Parte I

Adquirir conocimientos teóricos prácticos en técnicas electroanaliticas y de distintos tipos de electrodos para la determinación de sustancias de interés farmacológico, ambiental, biológico e industrial.

Parte II

Adquirir las habilidades necesarias para poder realizar la interpretación, orientada a la dilucidación estructural de compuestos orgánicos, de registros espectrales de Ultravioleta, Infra-Rojo, H-NMR, 13C-NMR, y Espectrometría de Masas.

XII - Resumen del Programa

- CELDA ELECTROQUÍMICA.
- SENSORES ELECTROQUÍMICOS.

- POTENCIOMETRÍA: DIRECTA Y TITULACIONES POTENCIOMÉTRICAS.
- CONDUCTIMETRIA Y TITULACIONES CONDUCTIMETRICAS.
- VOLTAMETRÍA: POLAROGRAFÍA. AMPEROMETRÍA
- MÉTODOS COULOMBIMÉTRICOS Y ELECTROGRAVIMÉTRICOS. TITULACIONES COULOMBIMETRICAS.
- ESPECTROSCOPÍA de ULTRAVIOLETA y VISIBLE
- ESPECTROSCOPÍA DE INFRARROJO.
- ESPECTROSCOPÍA DE RESONANCIA MAGNÉTICA NUCLEAR DE HIDROGENO-1.
- ESPECTROSCOPÍA DE RESONANCIA MAGNÉTICA NUCLEAR DE CARBONO -13.
- ESPECTROSCOPÍA DE MASAS.

XIII - Imprevistos

XIV - Otros

Los imprevistos como así también las situaciones no contempladas en el presente programa, serán resueltos con las aplicaciones de las normativas vigentes para la Facultad de Química, Bioquímica y Farmacia y Universidad Nacional de San Luis, en cada caso en particular.

Dada la situación sanitaria existente resultante de la pandemia por Covid-19, y en virtud de que la misma continúa en 2021, las clases teóricas se desarrollarán en forma virtual y los Trabajos Prácticos de laboratorio y evaluaciones en forma presencial cumpliendo con el aforo de un 50 %.

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		