

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Mecánica

(Programa del año 2021)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
Mecanismos y Elementos de Máquinas	TEC. UNIV. EN MANTEN. IND.	001/0 5	2021	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
GRECO, HUMBERTO	Prof. Responsable	P.Adj Semi	20 Hs
RODRIGO, LUCAS	Responsable de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	as de Aula Práct. de lab/ camp/ Resid/ PIP, etc. '	
6 Hs	0 Hs	0 Hs	0 Hs	6 Hs

Tipificación	Periodo
C - Teoria con prácticas de aula	1° Cuatrimestre

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
05/04/2021	08/07/2021	14	84	

IV - Fundamentación

Es sabido que en toda industria existen distintos tipos de procesos y etapas para el desarrollo de un producto en su totalidad. Todas estas etapas traen aparejadas la utilización de distintos elementos y maquinarias, necesarias para el desarrollo productivo de una empresa. El objeto de formación de un estudiante de tecnicaturas, dentro de Mecanismos y Elementos de Máquinas, es la capacitación para el diseño de estos dispositivos y también generarle conocimientos vitales con respecto a el mantenimiento de las distintas partes que componen una maquinaria dentro de un proceso, ayudándolo en la metodología de generación de planes correspondientes, selección de elementos y el discernimiento de componentes acordes a la tarea. La capacidad que el técnico adquiere al diseñar y seleccionar mecanismos y elementos de máquinas es vital para su posterior desarrollo en cuestiones como el mantenimiento y la resolución de un problema mecánico dentro de una maquinaria

V - Objetivos / Resultados de Aprendizaje

- Capacitar al estudiante para calcular, diseñar y seleccionar mecanismos y elementos de máquinas.
- Proporcionar al alumno una preparación suficiente para que pueda realizar el estudio metódico y el cálculo y diseño de otros elementos de máquinas no incluidos en el programa.
- Habituar al estudiante a la búsqueda de datos y de la información necesaria para el diseño de elementos de máquinas en la forma y condiciones que se encuentran en la práctica laboral, así como tomar decisiones sobre los elementos a utilizar y la elección de los materiales, coeficientes, relaciones dimensionales, etc.

VI - Contenidos

UNIDAD I

Criterios de diseño de los elementos de máquinas. Tensiones Normales y Tensiones Tangenciales. Esfuerzos de Tracción, Compresión, Ensayo de Tracción. Diagrama Tensión Deformación, Flexión Torsión, Esfuerzos combinados de Flexotorsión, Esfuerzos aplicados a los elementos de máquina, Ecuaciones.

UNIDAD II

Teoría de la transmisión de Potencia mediante engranajes. Definiciones y clasificación.

Ley fundamental del engrane. Línea de engrane. Ruedas armónicas. Forma de los flancos. Evolvente de círculo.

UNIDAD III

Engranajes para ejes Paralelos. Ruedas frontales de dientes rectos. Designaciones y proporciones. Tensiones Normales. Dentado de evolvente de círculo: trazado y característica. Longitud del segmento de engrane. Insensibilidad respecto de la variación de la distancia entre centros. Métodos de fabricación: fresas de disco, otros métodos. Interferencia y número de dientes. Dentados corregidos: sin variación de la distancia entre centros. Materiales empleados para la construcción de engranajes. Ruedas frontales de dientes helicoidales, Distribución de fuerzas, ventajas e inconvenientes.

UNIDAD IV

Dimensionado de engranajes de dientes rectos y helicoidales. Calculo de engranajes cilíndricos de dientes rectos. Cálculo a la flexión por el método de Lewis. Ancho del diente. Dimensiones de las ruedas. Calculo de engranajes de dientes helicoidales.

UNIDAD V

Engranajes para ejes no paralelos y concurrentes. Ruedas cónicas: características, superficies primitivas, distribución de fuerzas. Cálculo de los dientes.

UNIDAD VI

Engranajes para ejes no paralelos y no concurrentes. Ruedas cilíndricas de dientes helicoidales: descripción, relación de transmisión, selección de los ángulos de los dientes, empujes, rendimiento. Tornillo sinfín y rueda helicoidal: descripción, relación de transmisión, Selección y usos. Reversibilidad. Rendimiento. Diferentes tipos de ruedas y tornillos. Análisis de esfuerzos. Reacciones en los apoyos. Calculo.

UNIDAD VII

Ejes y Arboles

Descripción. Cargas. Calculo de la sección en base a la resistencia para materiales dúctiles, caso general, flexión pura, torsión pura. Deformaciones por flexión y torsión, Vibraciones laterales, velocidad critica. Calculo de árboles y ejes por código Asme, chavetero en ejes, chavetero en ruedas calculo y selección de los mismos, acoplamientos elásticos calculo y selección.

UNIDAD VIII

Tornillos. Generación. Tipos de roscas. Transmisión de esfuerzos. Rendimiento. Tornillo de unión Tornillo como elemento de unión. Rosca: distintos tipos de rosca, grado métrico, tuercas y arandelas, materiales. Esfuerzos en los tonillos, cálculo y dimensionamiento.

UNIDAD IX

Lubricación y cojinetes de deslizamiento. Regímenes de rozamiento. Lubricación. Propiedades de los lubricantes. Aceites y grasas. Viscosidad. Ley de Newton. Teoría de Petroff. Teoría y ecuación de Reynolds. Soluciones de la ecuación de Reynolds. Cálculo de cojinetes: método de la línea operativa. Caudal de aceite, por película, de ranura, hidrodinámica, total. Perdida de potencia. Temperatura operativa. Temperatura máxima de la película de aceite. Estudio del funcionamiento y cálculo de cojinetes cilíndricos partidos.

UNIDAD X

Rodamientos. Clasificación. Tensiones producidas por el contacto entre cuerpos elásticos. Capacidad de carga de una bolilla. Distribución de la carga en los rodamientos. Capacidad de carga, capacidad dinámica y duración del rodamiento. Relación entre la capacidad de carga y la velocidad de rotación. Carga equivalente Carga variable. Capacidad de carga estática. Par de rozamiento. Selección de rodamientos. Lubricación. Formas de montaje.

UNIDAD XI

Transmisiones por Correas. Fundamentos de las transmisiones por fricción. Fuerza de cierre. Transmisión entre ejes paralelos y entre ejes concurrentes. Ruedas de fricción: cálculo de la transmisión con ruedas metálicas y con ruedas no metálicas. Transmisiones por correas planas. Tensiones: influencia de la velocidad. Condiciones de servicio. Longitud de la correa abierta y cruzada. Arco de contacto. Transmisiones con pequeña distancia entre ejes. Orden de cálculo. Transmisiones por correas planas de tela, de tela y goma, de balata, de acero, orden de cálculo. Características de las poleas. Transmisiones por correas planas compuestas, de poliamida y de poliéster. Transmisiones por correas trapeciales. Transmisiones con una polea ranurada y otra lisa.

VII - Plan de Trabajos Prácticos

TP Nº1: Dimensionamiento de piezas sencillas sometidas a cargas estáticas de tracción, compresión, flexión y torsión.

TP N°2: Cálculo y dimensionamiento de engranajes de dientes rectos y de dientes helicoidales. Croquizado y planos bajo normas.

TP N°3: Cálculo de engranajes de dientes cónicos. Croquizado y plano bajo normas.

TP N°4: Cálculo de tornillo sinfín y rueda helicoidal.

TP N°5: Selección de rodamientos y diseño de su alojamiento.

TP Nº6: Diseño de transmisiones por correas y poleas.

TP Nº7: Cálculo y selección de bulones. Croquizado y plano bajo normas.

TP N°8: PROYECTO INTEGRADOR (tema variable).

VIII - Regimen de Aprobación

APROBACION DE LA ASIGNATURA SIN EXAMEN FINAL

- Tener aprobada y regularizada las correlativas precedentes del plan de estudios.
- Aprobar dos (2) parciales teórico-prácticos con una calificación no menor de siete (7).
- Presentar planos de piezas y elementos de máquinas.
- Presentar un (1) proyecto de mecanismos suministrado por la catedra y que se hará en el transcurso curricular de la materia.

APROBACION DE LA ASIGNATURA CON EXAMEN FINAL

- Ser alumno regula
- Aprobar dos (2) parciales teórico-prácticos con una calificación no menor de seis (6). Cada Examen Parcial podrá ser recuperado según la normativa vigente de acuerdo a Ord. CS. 32/14
- Presentar planos de piezas y elementos de máquinas
- .- El examen final se rendirá por el Último programa en vigencia al dia del examen
- .- El examen final contará del Desarrollo teórico de dos bolillas en el cual el alumno elegirá una bolilla para desarrollar y exponer la misma.

APROBACION DE LA ASIGNATURA EN CONDICION LIBRE

- Los alumnos libres rendirán según Ordenanza C.D. 001-91 del 03/07/91
- Los alumnos que se presente a rendir en condición de libre, deberá aprobar, previo examen oral (correspondiente al de un alumno regular), una evaluación de carácter práctico y de modalidad escrita donde para aprobar deberá responder satisfactoriamente en un 70%

.Nota Aclaratoria: Todas las clases teóricas – practicas se realizaran mediante el uso de la plataforma Google Meet siguiendo la modalidad virtual. Los parciales, los proyectos, y en caso de finales serán bajo la misma modalidad mientras se mantenga la situación epidemiológica actual.

IX - Bibliografía Básica

- [1] [1] Aguirre Esponda: "Diseño de elementos de máquinas". Ed. Trillas
- [2] [2] Shigley-Mitchell: "Diseño en Ingeniería Mecánica". Ed. Mc-Graw-Hill.
- [3] [3] Faires: "Diseño de Elementos de Maquinas". Ed. Montaner y Simón.
- [4] [4] Robert L. Norton: "Diseño de Maquinaria. Ed. Mgraw-Hill
- [5] [5] M.F.Spotts & T.E. Shoup: "Elementos de máquinas. Ed. Prentice-Hall
- [6] [6] Cosme: "Elementos de máquinas". Ed. Marymar.
- [7] [7] Lauria-Falco: "Apuntes de Mecanismos". Ed. C.E.I, la Línea Recta.
- [8] [8] Lauria-Falco: "Complementos de Mecanismos". Ed. C.E.I, la Línea Recta.
- [9] [9] Lauria-Falco: "Calculo de elementos de máquinas para diversos materiales y estados de carga". Ed. C.E.I. La Linea Recta.
- [10] [10] Diseño de elementos de máquinas Robert L. Mott.

X - Bibliografia Complementaria

- [1] [1] Hutte: "Manual del ingeniero". Ed. G. Gili.
- [2] [2] Dubbel: "Manual del Constructor de Maquinas". Ed. Labor.

- [3] [3] Vallance-Doughtie: "Cálculo de Elementos de Maquinas". Ed. Alsina.
- [4] [4] Fratschner: "Elementos de Maquinas". Ed. G. Gili.
- [5] [5] Dobrovolski v otros: "Elementos de Máquinas". Ed. Mir.
- [6] [6] Niemann: "Elementos de Máquinas". Ed. Labor.
- [7] [7] Buckingham: "Analytical Mechanical of Gears". Ed. Mc Graw-Hill.
- [8] [8] Wilckock-Booser: "Bearing Design and Applications". Ed. Mc Graw-Hill.
- [9] [9] Wahl: "Mechanical Springs". Ed. J. Wiley.
- [10] [10] Palmgren: "Técnica de los rodamientos de bolas y de rodillos". Ed. Industrias S.K.F.
- [11] [11] Ham-Crane-Rogers: "Mecánica de Maquinas". Ed. Mc Graw-Hill.
- [12] [12] Timoshenko: "Resistencia de materiales".
- [13] [13] Seely-Smith: "Curso superior de resistencia de materiales".
- [14] [14] Teijeiro: "Aplicaciones de la teoría de la lubricación". Ed. C.E.I, la Línea Recta.

XI - Resumen de Objetivos

- Capacitar al estudiante para calcular, diseñar y seleccionar elementos de máquinas.
- Proporcionar al alumno una preparación suficiente para que pueda realizar el estudio, método y cálculo y diseño de otros elementos de máquinas no incluidos en el programa.
- Habituar al estudiante a la búsqueda de datos y de la información necesaria para el diseño de elementos de máquinas, en la forma y condiciones en que se presenta este tipo de problemas en la práctica, así como tomar decisiones sobre los elementos a utilizar y la elección de los materiales, coeficientes, relaciones dimensionales, etc.

XII - Resumen del Programa

- UNIDAD I: Criterios de diseño de los elementos de máquinas.
- UNIDAD II: Teoría de la transmisión de Potencia mediante engranajes. Definiciones y clasificación.
- UNIDAD III: Engranajes para ejes Paralelos. Ruedas frontales de dientes rectos. Designaciones y proporciones
- UNIDAD IV: Dimensionado de engranajes de dientes rectos y helicoidales
- UNIDAD V: Engranajes para ejes no paralelos y concurrentes.
- UNIDAD VI: Engranajes para ejes no paralelos y no concurrentes.
- UNIDAD VII: Ejes y Arboles
- UNIDAD VIII: Tornillos. Generación. Tipos de roscas. Transmisión de esfuerzos. Rendimiento. Tornillo de unión.
- UNIDAD IX: Lubricación y cojinetes de deslizamiento.
- UNIDAD X: Rodamientos
- UNIDAD XI: Transmisiones por correas

XIII - Imprevistos

En el caso de presentarse imprevistos o imponderables que pudieran dificultar el dictado normal de las bolillas programadas, se considera incorporar los temas faltantes dentro de los proyectos finales e incluir clases de consulta adicionales destinadas especialmente a completar los conocimientos faltantes.

XIV - Otros