

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ciencias Básicas Area: Química

(Programa del año 2021)

I - Oferta Académica

Materia	Carrera	Plan Añ	o Período
		024/1	
Química Analítica I	INGENIERÍA QUÍMICA	2-19/ 202	1 1° cuatrimestre
		15	
		Ord.C	
Química Analítica I	ING.EN ALIMENTOS	.D.02 202	1 1° cuatrimestre
		3/12	

II - Equipo Docente

Docente	Función	Cargo	Dedicación
MERINO, NORA ANDREA	Prof. Responsable	P.Adj Exc	40 Hs
BARZOLA, MARIELA NOELIA	Auxiliar de Práctico	A.1ra Exc	40 Hs
FERRERO CONCETTI, CARLA AGOSTINA	Auxiliar de Laboratorio	A.2da Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	3 Hs	2 Hs	1 Hs	6 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
05/03/2021	08/07/2021	15	90

IV - Fundamentación

Presentación

La Química Analítica (proviene del latín: Ana = de abajo hacia arriba, Lisis = desmembrar, destruir) es la parte de la Química que tiene como finalidad el estudio de la composición química de un material o muestra, mediante diferentes métodos. Se divide en química analítica cuantitativa y química analítica cualitativa. La Química Analítica Cualitativa se dedica a la identificación de cuáles son las sustancias presentes en una muestra. La Química Analítica Cuantitativa se dedica a analizar que cantidad de cada una de las sustancias presentes hay en una muestra. Esta asignatura se centrará en el estudio de la Química Analítica Cuantitativa. La asignatura se desarrolla mediante clases teóricas y de problemas en el aula, así como clases de prácticas en el laboratorio, como principales actividades formativas. Estas clases se desarrollarán de manera virtual (teoría-práctico) y con presencialidad adaptada (laboratorio), en la medida que sea posible y de acuerdo a los protocolos sanitarios establecidos al momento del dictado de la asignatura.

Ubicación en el Plan de Estudios

La asignatura "Química Analítica 1" se estudia en tercer año, en el primer cuatrimestre y pertenece al Módulo de Materias Básicas.

Descripción de la asignatura. Adecuación al perfil profesional

Para el desarrollo de la asignatura se comienza enseñando nociones de técnicas básicas en el laboratorio, manejo estadístico de la información y fundamentos químicos del análisis cuantitativo. El eje estructural es la finalidad del análisis químico, la selección del proceso analítico con el objeto de demostrar que el método empleado es adecuado para el análisis de que se trate. Se estudia métodos de muestreo para distintos tipos de muestras. Se estudia el equilibrio químico en solución acuosa, los factores que influyen, el significado de la constante de equilibrio. Se reveen los distintos equilibrios químicos: ácido-base, precipitación, complejos y redox para luego estudiar los métodos volumétricos y gravimétricos involucrados en las técnicas de análisis que permiten justificar la factibilidad del uso de una técnica. Tanto el graduado en Ingeniería Química como el de Ingeniería en Alimentos necesitan un conocimiento sólido de esta asignatura en su vida profesional, ya que hay multitud de situaciones en las que necesita saber no sólo cómo se analiza una muestra sino también cómo de difíciles o costosas pueden llegar a ser determinadas resoluciones analíticas. Existen multitud de situaciones en las que se han de aplicar conocimientos de Química Analítica, tales como:

El desarrollo, control y mantenimiento de procesos químicos.

El control de calidad de un determinado producto.

La gestión medioambiental de los efluentes de una industria.

Relación con otras asignaturas. Prerrequisitos y recomendaciones

Para lograr estos objetivos los alumnos deben asociar conocimientos adquiridos en: Química General, Química Inorgánica, Química Orgánica, en particular, conocimientos básicos de nomenclatura química y de magnitudes, unidades fisicoquímicas y formulación de reacciones químicas. Además, es recomendable que el alumnado posea cierto bagaje de Estadística, para la comprensión de las distintas técnicas y evaluación de los resultados.

V - Objetivos / Resultados de Aprendizaje

Al finalizar la unidad de aprendizaje Química Analítica, se espera que el alumno adquiera las siguientes competencias:

Competencias específicas de la asignatura

Capacidad para comprender y aplicar los principios de conocimientos básicos de la Química Analítica, y sus aplicaciones en la Ingeniería.

Competencias genéricas y/o transversales al modelo universitario

- Generación y aplicación de conocimiento
- Capacidad de pensamiento crítico y reflexivo
- Capacidad de abstracción, análisis y síntesis
- Resolución de problemas
- Capacidad de gestión de la información
- Habilidades básicas computacionales
- Comunicación oral y escrita en lengua propia
- Habilidad de realizar trabajo autónomo
- Sociales
- Capacidad de trabajo en equipo
- Habilidad para trabajar en contextos culturales diversos
- Toma de decisiones
- Habilidades en las relaciones interpersonales
- Liderazgo
- Aplicables en contextos
- Capacidad de aplicar los conocimientos en la práctica profesional
- Capacidad para identificar, plantear y resolver problemas en situaciones reales
- Adaptación a nuevas situaciones
- Capacidad de aprender
- Capacidad de generar nuevas ideas (creatividad)
- Éticas
- Compromiso para la preservación del medio ambiente

- Compromiso ético
- · Preocupación por la calidad
- Motivación de logro

Objetivos generales / competencias específicas del título

Aplicar los métodos adecuados para el tratamiento de datos y evaluación de su calidad.

Desarrollar criterios para evaluar resultados.

Reconocer y actuar según las buenas prácticas en el trabajo científico.

Optimizar el uso de material de laboratorio para resolver problemas concretos en el campo del análisis de materiales.

Identificar los parámetros químicos (orgánicos e inorgánicos) que determinan la calidad de analitos en diferentes matrices.

Ejecutar procedimientos de laboratorio en relación con muestras de diferentes orígenes.

Generar resultados analíticos de calidad.

Conocer las técnicas analíticas más usadas en un laboratorio de caracterización analítico.

Resultados del aprendizaje

- 1. Aplicar los conceptos de ácido-base, proceso redox y producto de solubilidad al análisis químico.
- 2. Interpretar los sistemas de formación de complejos y los factores que afectan al desplazamiento del equilibrio.
- 3. Identificar los factores que afectan a la precipitación, los tipos de precipitados y las condiciones óptimas para la precipitación.
- 4. Calcular:
- a) concentraciones en el equilibrio de sistemas ácido base y de formación de complejos
- b) la constante y el potencial de equilibrio de un sistema redox
- c) la solubilidad de un precipitado
- d) el pH para la disolución de precipitados.
- 5. Construir curvas de valoración de:
- a) sistemas sencillos ácido base y mezclas
- b) sistemas con intercambio de igual o distinto número de electrones
- c) equilibrios de precipitación
- d) reacciones de formación de complejos
- 6. Establecer criterios para:
- a) la selección de un método analítico
- b) la selección de un indicador
- c) evaluar los errores de valoración en las curvas correspondientes
- 7. Preparar, estandarizar y conservar disoluciones para volumetrías:
- a) ácido base
- b) redox
- c) de precipitación
- d) de formación de complejos
- 8. Aplicar:
- a) los distintos métodos volumétricos a determinaciones analíticas con interés industrial
- b) el análisis gravimétrico con fines de separación y recubrimientos electrolíticos

Valores y actitudes

Para vivir en sociedad es necesario respetar las normas de convivencia que nos permiten construir un universo compartido con las personas que nos rodean. Esas normas se construyen desde una cultura compartida y varían según la comunidad respectiva. El término valor se refiere a cualidades que poseen ciertos objetos o determinadas acciones, gracias a las cuales son consideradas preferibles o más acordes con nuestros principios morales. La sociedad, en este caso la comunidad universitaria, trata de implantar en las personas valores comunes y el hecho de compartirlos es beneficioso para la convivencia del grupo. Los valores determinan las normas que rigen nuestro comportamiento, las actitudes que tomamos ante diferentes situaciones diarias.

La actitud es una disposición permanente del sujeto para reaccionar ante determinados valores. Las actitudes se cristalizan en manifestaciones de conductas que son directamente proporcionales a los valores implícitos en ellas. Por eso, la formación de las actitudes es una tarea básica, más importante todavía que la transmisión de conocimientos y no tanto por aquello de que con el tiempo las cosas aprendidas de memoria se olvidan, expresión por demás cuestionable, sino porque la actitud, es decir, la predisposición del que obra, sigue siendo una pieza clave en la educación.

VI - Contenidos

UNIDAD 1: Generalidades de Química Analítica

Competencia de la unidad: Destaca la importancia de la Química Analítica en las tareas de laboratorio, su relación con otras ciencias, su aplicación adecuada y la legislación vigente en laboratorios químicos.

Objetivos de la unidad: Identificar instrumentos de laboratorio básicos. Diferenciar los métodos de muestreo que se ajusten para cada tipo de muestra.

Elementos de competencia disciplinar:

- Conocimientos: Definición de Química Analítica y su relación con otras ciencias. Aplicaciones de la Química Analítica. El proceso analítico. Propiedades analíticas: definición, clasificación, importancia en el análisis químico. Muestreo: Objetivos e importancia. Diferentes métodos. Traslado de muestras. Escalas analíticas. Preparación de la muestra para el análisis: ensayos preliminares; disolución; disgregación; destrucción de materia orgánica; acondicionamiento. El laboratorio analítico. Condiciones que debe reunir. Equipamiento del laboratorio: extractores, balanzas, etc. Calibración y control de los instrumentos utilizados en el laboratorio. Las Normas en un Laboratorio analítico: ISO 17025 y la importancia de su aplicación.
- Habilidades: Seleccionar métodos de muestreo adecuados para diferentes muestras. Identificar y clasificar los elementos necesarios para el funcionamiento básico de un laboratorio químico.
- Actitudes y valores: Tenacidad. Respeto. Constancia. Disciplina. Interés. Puntualidad.
- Estrategias de enseñanza: Aprendizaje basados en clases del docente, exposiciones orales de los alumnos con uso de diapositivas, en grupo, frente a la clase, debates.
- Recursos didácticos: Computadora personal, conectividad a internet (videos, presentaciones, plataforma educativa institucional, correo electrónico, documentos en pdf, etc.).

UNIDAD 2: Equilibrio y Volumetría ácido-base

Competencia de la unidad: Clasifica los compuestos químicos como ácidos y bases. Proporciona la base para el cálculo de concentraciones de soluciones de estas especies químicas.

Objetivos de la unidad: Definir el equilibrio químico y clasificar las especies ácidas y básicas. Identificar las ecuaciones involucradas en el equilibrio e indicadores. Representar la evolución del comportamiento ácido-base mediante curvas de titulación.

Elementos de competencia disciplinar:

- Conocimientos: Definiciones de masa molar y masa equivalente, equivalentes. Concentraciones: definición, ecuaciones. Equilibrio ácido-base. Revisión de teorías de ácidos y bases; influencia del solvente; concepto de pH. Cálculo de pH para electrolitos fuertes y débiles, monopróticos y polipróticos. Soluciones amortiguadoras. Hidrólisis de sales. Análisis volumétrico. Generalidades. Volumetrías ácido-base: ácidos fuertes, débiles, ácidos polipróticos, mezclas alcalinas. Curvas de titulación ácido-base; punto de equivalencia, punto final. Indicadores de punto final; intervalo de viraje del indicador, error de titulación, patrones.
- Habilidades: Calcular la concentración de una solución. Clasificar especies en químicas ácidas y básicas. Describir matemática y gráficamente el comportamiento de una reacción de neutralización. Interpretar las curvas de titulación. Seleccionar el indicador apropiado para cada reacción. Identificar los errores posibles en esta volumetría.
- Actitudes y valores: Tenacidad. Respeto. Participación. Observación. Solidaridad. Puntualidad.
- Estrategias de enseñanza: Aprendizaje basados en clases del docente, resolución de guía de problemas propuestos, tanto individualmente como en grupo, frente a la clase, debates. Prácticos de laboratorio.
- Recursos didácticos: Computadora personal, conectividad a internet (videos, presentaciones, plataforma educativa institucional, correo electrónico, documentos en pdf, etc.).

UNIDAD 3: Equilibrio de solubilidad y Volumetría de precipitación

Competencia de la unidad: Determinación de concentraciones de soluciones de compuestos químicos de baja solubilidad. Objetivos de la unidad: Identificar los factores que afectan el equilibrio de un compuesto de baja solubilidad. Aplicar los métodos analíticos apropiados para la determinación de la concentración analítica.

Elementos de competencia disciplinar:

- Conocimientos: Equilibrio de solubilidad: solubilidad y producto de solubilidad. Factores físicos y químicos que afectan el equilibrio. Volumetrías de precipitación: análisis de la curva de titulación para iones de igual y distinta carga; punto de equivalencia, punto final, indicadores, error de titulación; sustancias patrón. Métodos argentométricos: Mohr, Volhard, Fajans.
- Habilidades: Clasificar las soluciones según su concentración. Describir matemática y gráficamente el comportamiento de

una reacción de formación de precipitado. Interpretar las curvas de titulación. Seleccionar el método argentométrico apropiado para cada analito.

- Actitudes y valores: Respeto. Responsabilidad. Pensamiento crítico. Atención al entorno. Participación.
- Estrategias de enseñanza: Aprendizaje basados en clases del docente, resolución de guía de problemas propuestos, tanto individualmente como en grupo, frente a la clase, debates. Práctico de laboratorio.
- Recursos didácticos: Proyector digital, computadora personal, pizarra.

UNIDAD 4: Equilibrio y Volumetría de formación de complejos

Competencia de la unidad: Clasificar los agentes complejantes y describir su comportamiento en el equilibrio químico. Aplicar la quelatometría para la determinación de la concentración analítica.

Objetivos de la unidad: Identificar los diferentes compuestos químicos que pueden formar un complejo químico. Percibir la importancia del pH en el estudio del equilibrio de una reacción de complejación. Aplicar el uso de indicadores metalocrómicos.

Elementos de competencia disciplinar:

- Conocimientos: Volumetrías por formación de complejos. Generalidades. Aplicaciones: Mercurimetrías,

Cianoargentometrías. Punto final, punto de equivalencia, errores de titulación. Indicadores metalocrómicos, sustancias patrón en complejometría. Quelometrías: valoraciones con EDTA, métodos directos e indirectos. Aplicación a la determinación de dureza de aguas.

- Habilidades: Clasificar las especies complejantes. Describir matemática y gráficamente el comportamiento de una reacción de formación de complejos. Interpretar las curvas de titulación. Seleccionar las condiciones de equilibrio y los indicadores apropiado para cada dupla titulante-analito.
- Actitudes y valores: Respeto. Responsabilidad. Pensamiento crítico. Capacidad.
- Estrategias de enseñanza: Aprendizaje basados en clases del docente, resolución de guía de problemas propuestos, tanto individualmente como en grupo, frente a la clase, debates. Práctico de laboratorio.
- Recursos didácticos: Computadora personal, conectividad a internet (videos, presentaciones, plataforma educativa institucional, correo electrónico, documentos en pdf, etc.).

UNIDAD 5: Equilibrio y Volumetría redox

Competencia de la unidad: Identificar los equivales de la reacción y justificar el uso del potencial para el seguimiento de la reacción redox. Clasificar los indicadores posibles a utilizar.

Objetivos de la unidad: Identificar los indicadores en volumetría redox. Aplicar el potencial químico para el cálculo de la concentración de especies redox.

Relacionar el fenómeno provocado en la interacción de los rayos X con la muestra, con la información que se puede obtener de la misma.

Elementos de competencia disciplinar:

- Conocimientos: Equilibrio de óxido-reducción. Volumetrías redox: Curvas de titulación redox, punto inicial, potencial en el punto de equivalencia y punto final, error de titulación, curvas asimétricas. Clasificación de los indicadores. Aplicaciones: Cerimetría, Permanganimetría, etc.
- Habilidades: Identificar la especie oxidante y la especie reductora en una reacción redox. Elegir el indicador adecuado para cada titulación. Calcular la concentración del analito a partir de la ecuación de Nernst.
- Actitudes y valores: Respeto. Responsabilidad. Autonomía. Esfuerzo.
- Estrategias de enseñanza: Aprendizaje basados en clases del docente, resolución de guía de problemas propuestos, tanto individualmente como en grupo, frente a la clase, debates. Práctico de laboratorio.
- Recursos didácticos: Computadora personal, conectividad a internet (videos, presentaciones, plataforma educativa institucional, correo electrónico, documentos en pdf, etc.).

UNIDAD 6: Gravimetría

Competencia de la unidad: Clasificar las etapas de los métodos gravimétricos y los factores experimentales que se deben considerar en cada una de ellas.

Objetivos de la unidad: Definir precipitado y clasificar los tipos. Explicar la dependencia con la solubilidad y la concentración con la formación de estos. Identificar las variables experimentales involucradas en cada etapa gravimétrica y el grado de influencia de ellas.

Elementos de competencia disciplinar:

- Conocimientos: Principios generales del análisis gravimétrico. Formación (mecanismos) y propiedades de los precipitados. Distintos procesos y factores que los afectan; envejecimiento, cambios estructurales, envejecimiento térmico. Precipitados

cristalinos, coagulados y gelatinosos. Contaminación de los precipitados: clasificación y tipos; coprecipitación, postprecipitación, adsorción. Técnicas de purificación: digestión y lavado. Tratamiento térmico de los precipitados: secado, calcinación, eliminación de agua, conversión a otro tipo de pesada: factor gravimétrico.

- Habilidades: Identificar las similitudes y las diferencias entre el método volumétrico y el gravimétrico para calcular la concentración de un analito.
- Actitudes y valores: Respeto. Responsabilidad. Perseverancia. Paciencia. Tolerancia.
- Estrategias de enseñanza: Aprendizaje basados en clases del docente, resolución de guía de problemas propuestos, tanto individualmente como en grupo, frente a la clase, debates. Práctico de laboratorio.
- Recursos didácticos: Computadora personal, conectividad a internet (videos, presentaciones, plataforma educativa institucional, correo electrónico, documentos en pdf, etc.).

VII - Plan de Trabajos Prácticos

Metodología Docente

Clases de Teoría:

Exposición de contenidos mediante presentación y/o explicación por parte del profesor.

- Trabajo del estudiante:
- o Presencialidad adaptada/Virtual: Asistencia y participación activa.
- o No presencial: Estudio de la materia.

Clases de Resolución de Problemas:

Resolución de problemas tipo y casos prácticos guiados por el profesor. Se aplicarán los conocimientos adquiridos en las clases teóricas. Con estas clases se pretende desarrollar criterio y ejercitar la capacidad de razonamiento.

- Trabajo del estudiante:
- o Presencialidad adaptada/Virtual: Participación activa. Resolución de ejercicios y problemas. Planteamiento de dudas.
- o No presencial: Estudio de la materia. Resolución de ejercicios propuestos por el profesor.

Prácticos de laboratorio:

Actividades relacionadas con la materia, desarrolladas en el Laboratorio bajo la supervisión del profesor. Los objetivos de esta actividad consisten en afianzar los conocimientos adquiridos, y desarrollar la capacidad de trabajar en equipo y seguir metodologías a través de los protocolos de los ensayos experimentales.

- Trabajo del estudiante:
- o Presencialidad adaptada: Realización de las prácticas de laboratorio propuestas.
- o No presencial: Elaboración de los informes de prácticas realizadas, que deberán presentar, en tiempo y forma, para aprobar las mismas.

Las sesiones de laboratorio serán:

- 1. Uso de material de laboratorio y preparación de soluciones.
- 2. Determinación gravimétrica de sulfatos.
- 3. Normalización y valoración de ácidos y bases fuertes.
- 4. Valoración de ácidos débiles: Determinación de la acidez de un vinagre comercial.
- 5. Resolución de mezclas alcalinas.
- 6. Volumetría de precipitación: Determinación de cloruros en leche comercial.
- 7. Volumetría de complejación: Determinación de dureza de aguas.
- 8. Volumetría redox: Determinación de vitamina C.

Seminarios:

Los alumnos deberán realizar al menos una presentación oral, en grupo, de temas seleccionados por los profesores de la asignatura, relacionados al programa analítico. Estos temas, así como la conformación de los grupos, serán informados a los alumnos al comienzo del cuatrimestre, para su preparación. Las presentaciones se realizarán durante todo el cuatrimestre. El objetivo de esta actividad complementaria es mejorar el aprendizaje a través del trabajo en grupo.

- Trabajo del estudiante:
- o Virtual: Exposición oral.

o No presencial: Elaboración de la presentación basada en la búsqueda y el análisis bibliográfico del tema propuesto.

VIII - Regimen de Aprobación

REGIMEN DE ALUMNO REGULAR

- 1. Parciales: Los alumnos deberán aprobar dos exámenes parciales o sus recuperatorios con un mínimo de 70% correcto. Las evaluaciones parciales y los primeros recuperatorios serán escritos, teórico-prácticos. Cada uno de los parciales tendrá dos recuperatorios. La primera recuperación de los parciales se tomará, en lo posible, en el término de una semana. El alumno tendrá derecho a un segundo recuperatorio al finalizar el cuatrimestre. El segundo recuperatorio podrá ser oral o escrito, y será teórico-práctico. Los segundos recuperatorios, correspondientes al primer y segundo parcial, se tomarán en la misma fecha
- 2. Acreditar el 85% de asistencia a los trabajos prácticos de Aula en el horario establecido para los mismos.
- 3- Aprobación de los trabajos prácticos de Laboratorio (mientras sea posible su realización):
- a) El alumno deberá concurrir al laboratorio en el horario establecido, con una tolerancia de 10 minutos después de los cuales será considerado ausente.
- b) Deberá demostrar un conocimiento previo de la teoría correspondiente al trabajo práctico a realizar, y será interrogado antes, durante o al finalizar la realización del trabajo práctico en forma escrita.
- c) Registrará en forma ordenada y prolija los datos obtenidos y los cálculos correspondientes en una libreta, cuaderno o carpeta de laboratorio.
- d) Al finalizar el trabajo práctico deberá entregar el material en perfectas condiciones de limpieza.
- e) Deberá entregar un informe con los resultados obtenidos, sin el cual el trabajo práctico no se considera realizado. En este informe se consignará resultados y conclusiones.
- f) Se requiere una asistencia del 100% a las clases de laboratorio.
- 4- Recuperación de los Prácticos de Laboratorio: Tendrán derecho a una primera recuperación aquellos alumnos que hubieran aprobado el 80% de los trabajos realizados durante el cuatrimestre.
- 5- Los alumnos deberán aprobar con el 70%, los seminarios presentados durante el cuatrimestre.
- 6- Examen final: La modalidad es oral, virtual o presencial, de acuerdo a la condición sanitaria y a los protocolos vigentes al momento del examen. Programa abierto sin extracción de bolillas, donde el alumno comienza a exponer un tema y luego el tribunal puede interrogarlo sobre cualquier otro tema del programa analítico.

REGIMEN DE ALUMNO LIBRE

Ya que el examen requiere la previa realización de prácticas en el laboratorio, se podrá realizar si las condiciones sanitarias y los protocolos vigentes lo permiten.

Todo alumno que se presenta a rendir la asignatura en condición de libre deberá:

- a- Realizar y aprobar al menos dos experiencias de laboratorio, entre las que son desarrolladas durante el dictado de la asignatura. Estas experiencias serán seleccionadas por el tribunal evaluador, se realizarán con anticipación al examen final y deberán aprobarse para poder acceder al mencionado examen. La aprobación solo tendrá validez para el turno de examen en el cual el alumno se inscribió, luego de esa fecha perderá validez.
- b- Aprobar un examen escrito de temas de laboratorio y problemas, previo acuerdo con el tribunal, con la anticipación requerida según la reglamentación vigente antes del examen final correspondiente al alumno regular. Este examen escrito se considera aprobado cuando responda satisfactoriamente a un 80% de lo solicitado. La aprobación de esta evaluación práctica solo tendrá validez para el examen teórico final del turno de exámenes en el cual el alumno se inscribió, luego de esta fecha, en caso de no presentarse al oral, el examen escrito perderá validez.

El peso de los valores obtenidos en las actividades propuestas (cuanto aportan a la nota final, que debe ser 70%) serán:

Prácticas de Laboratorio 20%

Seminario 20%

Exámenes Parciales (dos) 20% cada una

Valores y Actitudes 20%

INDICADORES DEL APRENDIZAJE

- Demostrar habilidad para entender/resolver/discutir el problema analítico a la luz de los principios de la Química General, la

Química Inorgánica, la Química Orgánica, la Física.

- Demostrar que es capaz de planificar y valorar la importancia de las distintas fases de un análisis químico y las peculiaridades de cada tipo de análisis en función de la matriz, de los analitos a determinar y de su concentración.
- Demostrar que conoce, entiende el significado y utiliza adecuadamente la terminología propia de los métodos analíticos.
- Demostrar el conocimiento de los Métodos Volumétricos y Gravimétricos de Análisis.

IX - Bibliografía Básica

- [1] Skoog, West, Crouch y Holler Fundamentos de Química Analítica Cengage Learning S.A., 9ª Ed. 2015.
- [2] Day Jr. y Underwood Química Analítica Cuantitativa Editorial Prentice Hall. 5a Ed. 1997.
- [3] Harris, Daniel Análisis Químico Cuantitativo Ed Reverté, 3a en español. 2007
- [4] Butler, J. N. Equilibrio iónico en soluciones Cálculo de pH y solubilidad (Addison Wesley Series). 1980.
- [5] Burriel Martí, Fernando Química Analítica Cualitativa Ed. Paraninfo, 18ª Ed. 2008.
- [6] Kolthoff, I. M. y Sandell, E. B. Tratado de Química Analítica Cuantitativa Ed. Nigar, 6ª Ed. 1985.
- [7] Vogel, Arthur Química Cuali y Cuantitativa (I y II) Editorial Kapelusz. 1974.
- [8] Bermejo, Francisco Química Analítica General, Cuantitativa e Instrumental (I y II) Ed Paraninfo. 1991.
- [9] Skoog, West, Holler and Crouch Analytical Chemistry an Introduction 7^a Ed. 2000.

X - Bibliografia Complementaria

- [1] Maham B. Química. Curso Universitario. Editorial Fondo Educativo Interamericano. 1968.
- [2] Brown T., LeMay Jr., Bursten B. Química. La ciencia central. Editorial Prentice Hall Hispanoamericana S.A., 7^a Ed. 1998.
- [3] Fritz Feigl y Vinzenz AnderRITZ Pruebas a la Gota en Análisis Inorgánico Ediciones El manual moderno, México. 1980.

XI - Resumen de Objetivos

- Obtener un panorama del proceso analítico y sus etapas.
- Adquirir un entrenamiento en la selección del método más adecuado para realizar una determinación, considerando la muestra y los equilibrios de reacción.
- Entrenar a los alumnos en la interpretación de una técnica y la utilización de la misma y adquirir cierta destreza en la manipulación de material de laboratorio, orden en el registro de datos, realización de cálculos y análisis de resultados.
- Identificar los posibles errores que se cometen al realizar un análisis.
- Resolución de problemas de aula para agilizar su razonamiento y poder en un futuro aplicarlos a la resolución de problemas reales.

XII - Resumen del Programa

- Unidad 1: Métodos y técnicas analíticas. Sensibilidad y selectividad de una reacción. Ensayos preliminares. Tratamiento de muestras. El laboratorio analítico. Normas ISO.
- Unidad 2: Equilibrio químico. Equilibrio ácido-base. Análisis volumétrico. Volumetría ácido-base.
- Unidad 3: Equilibrio de solubilidad. Volumetrías de precipitación. Argentometrías.
- Unidad 4: Equilibrio y volumetría por formación de complejos. EDTA.
- Unidad 5: Equilibrio y volumetría redox: Cerimetrías, Permanganimetría.
- Unidad 6: Formación e impurificación de precipitados. Distintos tipos de precipitados: cristalinos, geles y soles.

XIII - Imprevistos

El programa descripto de la asignatura será realizado de manera virtual. En caso de que sea posible la realización de clases presenciales, en la medida que los protocolos sanitarios y la disponibilidad recursos humanos lo permitan, serán realizados los prácticos de laboratorio, bajo la modalidad de presencialidad adaptada.

XIV - Otros