

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ouímica Bioquímica y Farmacia **Departamento: Quimica**

(Programa del año 2021) (Programa en trámite de aprobación) (Presentado el 09/09/2021 11:40:48)

Area: Qca General e Inorganica

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
QUIMICA INORGANICA	ANAL. QUÍMICO	13/12 -CD	2021	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
NARDA, GRISELDA EDITH	Prof. Responsable	P.Tit. Exc	40 Hs
BERNINI, MARIA CELESTE	Prof. Colaborador	P.Adj Exc	40 Hs
GOMEZ, GERMAN ERNESTO	Responsable de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
6 Hs	Hs	Hs	3 Hs	9 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre

	D	Ouración	
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
05/04/2021	08/07/2021	14	140

IV - Fundamentación

El curso se orienta a dar una formación básica en Química Inorgánica abordando temas generales de tendencias en la Tabla Periódica y temas más específicos donde se estudia la Química del Estado Sólido, Química de Coordinación y Radioquimica. Los alumnos que inician el curso ya tienen la base de los principios básicos de Química y Fisicoquímica, los cuales son aplicados a la resolución de problemas para sistemas inorgánicos. Así, se aplican principios tales como Equilibrio Químico, Termodinámica, Cinética, etc. Los temas abordados serán de utilidad en cursos superiores donde se estudie Materiales (propiedades y caracterización), Análisis Químico, Catálisis Homogénea y Heterogénea, Síntesis.

V - Objetivos / Resultados de Aprendizaje

Lograr que el alumno

- adquiera conocimientos sobre los conceptos de la Química Inorgánica y su relación con temas específicos de su carrera.
- pueda fundamentar las propiedades que presentan los elementos y sus compuestos analizando la Tabla Periódica por grupos, períodos y en similitudes diagonales.
- integre y aplique los conceptos vistos en Química General en análisis de los procesos de Química Inorgánica.
- sepa distinguir los procesos redox y los ácido-base.
- conozca y aplique los principios de la Química de Coordinación y de la Química del estado sólido.
- adquiera adiestramiento en el manejo de técnicas de laboratorio y se inicie en la aplicación de estrategias para resolver problemas concretos en el campo de la Química Inorgánica.

- conozca los medios y fuentes en donde encontrar la información necesaria para resolver los problemas planteados (bibliografía, manuales, información on line).
- se informe y aplique las Normas de Seguridad en el manejo de productos químicos.

VI - Contenidos

Tema 1

Reactividad en Química Inorgánica. Análisis de parámetros termodinámicos y cinéticos relacionados con la espontaneidad y labilidad de un proceso. Reacciones ácido-base: conceptos de Lewis, Brönsted-Lowry y Pearson. Carácter ácido-base de especies en solución. Reacciones redox: equilibrios y espontaneidad. Ecuación de Nernst. Sistematización de datos: Diagramas de Latimer, Frost, Pourbaix. Reacciones de Complejación. Reacciones de Descomposición Térmica. Diagramas de Ellingham. Aplicaciones. Procesos metalúrgicos.

Tema 2

Tipos de Sólidos: concepto de sólido amorfo y cristalino. Celda Unitaria. Red Espacial. Clasificación. Sistemas Cristalográficos. Sólidos iónicos, covalentes, moleculares, metálicos. Aleaciones y amalgamas. Aplicaciones del modelo iónico. Energía Reticular. Cristalización y Solubilidad. Aplicación del concepto de Kps. Fundamentos y técnicas del proceso de cristalización. Modelo de empaquetamiento compacto y no compacto. Estructura Cristalinas. Redes típicas. Simetría en Química. Aplicación de simetría para la clasificación de sólidos. Defectos reticulares. Fundamentos y aplicaciones de la Difracción de Rayos X.

Tema 3

Química de Coordinación. Tipos de Ligandos. Nomenclatura de complejos. Estereoquímica. Isomería. Estereoisomería. Isomería de posición. Conceptos de: compuestos de coordinación, quelatos, aductos, clusters, cúmulos, cubanos, pi-ácidos, organometálicos, metalocenos, clatratos, fullerenos. Teorías de Enlace en Química de Coordinación: Teoría de Lewis, Teoría del Campo Cristalino, Campo Ligando, Teoría del Enlace de Valencia y Teoría del Orbital Molecular. Efecto de Jahn-Teller. Vinculación con propiedades de Color y Magnetismo. Momentos magnéticos, susceptibilidad magnética. Estabilidad y Cinética. Mecanismos de reacción en la síntesis de complejos. Reactividad de complejos. Factores termodinámicos y cinéticos en la síntesis de complejos. Tipos de reacciones en la síntesis de complejos.

Tema 4

Núcleo atómico. Núclido. Tabla de núclidos, concepto y uso. Radioactividad: concepto. Actividad. Ecuación fundamental de la radioquímica. Tiempo de vida media. Radioactividad natural: tipos de emisión (alfa, β+, β-, gamma, etc.). Poder de ionización y penetración. Ley del corrimiento. (Series radiactivas naturales). Separación de isótopos radiactivos. Reacciones nucleares artificiales. Elementos transuránicos. Fisión y fusión nuclear. Efectos de la radiación en sistemas biológicos. Dosis efectiva y equivalente, unidades. Aplicaciones industriales, biológicas y analíticas de los radionúclidos.

Tema 5

Tabla Periódica: tendencias horizontales, verticales, diagonales. Carga nuclear efectiva, radios iónicos, energía de ionización, afinidad electrónica. Principio de singularidad. Estudio de la variación sistemática de los elementos y sus compuestos. Carácter metálico. Variación del carácter ácido-base de óxidos e hidruros. Estados de oxidación. Poder polarizante. Geometría adoptada por los elementos en sus distintos estados de oxidación.

Tema 6

Elementos Representativos de los grupos 1 y 2. Generalidades. Tendencias y principales propiedades. Reactividad. Haluros, óxidos, peróxidos, superóxidos, hidróxidos, sales de oxoácidos. Análisis de las tendencias periódicas (solubilidad, estabilidad térmica). Química redox. Química de coordinación. Metalurgia. Aplicación en procesos industriales, biológicos y farmacológicos de los elementos de estos grupos.

Tema 7

Elementos Representativos de los grupos 13 y 14. Generalidades: configuración electrónica y estados de oxidación; estados iónicos y covalencias; efecto del par inerte. Tendencias y principales propiedades; casos del boro y del carbono. Estabilidad de óxidos, hidruros, haluros y otras sales. Química en solución. Química redox. Metalurgia. Aplicación en procesos industriales, biológicos y farmacológicos de los elementos de estos grupos.

Tema 8

Elementos Representativos de los grupos 15 y 16. Generalidades: configuración electrónica y estados de oxidación; estados iónicos y covalencias; efecto del par inerte. Tendencias y principales propiedades: variación del carácter metálico. Estabilidad de óxidos, hidruros, haluros y otras sales. Oxácidos, especies condensadas. Química en solución. Química redox. Metalurgia. Aplicación en procesos industriales, biológicos y farmacológicos de los elementos de este grupo.

Tema 9

Elementos Representativos de los grupos 17 y 18. Generalidades: configuración electrónica y estados de oxidación; estados

iónicos y covalencias. Estabilidad de óxidos, hidruros, haluros y otras sales. Oxácidos. Química en solución. Química redox. Metalurgia. Aplicación en procesos industriales, biológicos y farmacológicos de los elementos de estos grupos.

Propiedades físicas y químicas de los gases nobles. Compuestos de xenón. Otros compuestos de los gases nobles. Hidrógeno: isótopos del hidrógeno. Propiedades físicas y químicas del hidrógeno. Síntesis y usos del hidrógeno. Hidruros: clasificación y propiedades generales.

Tema 10

Elementos de Transición. Concepto. Clasificación. Metodología de estudio. Generalidades. Tendencias periódicas.

Principales propiedades de los elementos y sus compuestos. Estudio de la química de los elementos de la primera serie de Transición. Estudio de los elementos de postransición: Zn, Cd y Hg. Principales compuestos

Tema 11

Elementos de Transición. Estudio de la química de los elementos de la segunda y tercera serie de Transición. Lantánidos y actínidos. Generalidades y tendencias periódicas. Análisis de algunas propiedades de estos elementos y sus compuestos.

VII - Plan de Trabajos Prácticos

PLAN DE TRABAJOS DE AULA Y SEMINARIOS.

- 1. Aplicación del concepto de Kps a Solubilidad de compuestos inorgánicos. Manejo de Curvas de Solubilidad. Tipos de Sólidos. Problemas.
- 2. Determinación de Simetría en especies diversas. Empaquetamientos: cálculos y manejo de modelos.
- 3. Cálculos de Reactividad I. (incluye sólidos, gases y soluciones)
- 4. Cálculos de Reactividad II (incluye sólidos, gases y soluciones)
- 5. Nomenclatura de complejos. Estereoquímica. Ejercicios.
- 6. Teorías en Química de Coordinación. Ejercicios y problemas.
- 7. Algunos aspectos sistemáticos de las tres Series de Transición, bloque d Resolución de cuestionarios. Parte 1
- 8. Algunos aspectos sistemáticos de las tres Series de Transición, bloque d y f. Resolución de cuestionarios. Parte 2.
- 9. Elementos Representativos. Resolución de cuestionarios. Parte 1.
- 10. Elementos Representativos. Resolución de cuestionarios. Parte 2.
- 11. Análisis de espectros electrónicos y propiedades magnéticas de complejos.
- 12. Sistemas. Redox. Usos de Diagramas. Cálculos.
- 13. Síntesis en Química Inorgánica. Cálculos estequiométricos y de rendimiento.
- 14. Profundización en los aspectos sistemáticos de las tres Series de Transición bloque d y Elementos Representativos. Seminarios.
- 15. Radioquímica: Reacciones. Aplicaciones.

PLAN DE TRABAJOS PRACTICOS DE LABORATORIO

- 1. Reacciones ácido-base, redox, endotérmicas y exotérmicas.
- 2. Procesos de cristalización y solubilidad. Técnicas de separación por cristalización-precipitación. Disolución.

Cristalización. Filtración. Decantación. Centrifugación. Purificación de sólidos: cristalización fraccionada. Secado de sólidos.

- 3. Difracción de Rx (DRX): caracterización de sólidos cristalinos; resolución de un sólido perteneciente al sistema cúbico.
- 4. Compuestos de coordinación. Síntesis por diversas técnicas.
- 5. Espectros de absorción de complejos: espectros electrónicos UV-visible.
- 6. Elementos de transición y post-transición: Equilibrios ácido-base y redox en 1ra serie de transición. Equilibrios ácido-base y redox en post-transición, 2da y 3ra serie de transición.
- 7. Elementos representativos: Principales reacciones de los

elementos de los bloque s y p. Electrólisis de cloruro de sodio (potenciales redox). Obtención de geles-coloides Al(OH)3 y H2SiO3 y otros.

NORMAS GENERALES DE SEGURIDAD

Condiciones de trabajo: Prevención. Normas de seguridad. Cuidado y limpieza del lugar de trabajo. Señalizaciones. Código de colores.

Hábitos de trabajo: Ubicación del material de seguridad como extintores, duchas de seguridad, lavaojos, botiquín, etc.

Etiquetas y fichas de datos de seguridad de los productos. Campanas.

Protección personal: Normas básicas. Criterio y grados de protección. Elementos de protección personal. Guantes de seguridad. Guardapolvos. Gafas de seguridad.

Seguridad en el laboratorio: Seguridad en la manipulación de materiales y/o sustancias. Derrames. Tratamiento de polvos,

VIII - Regimen de Aprobación

El Curso está estructurado en clases Teóricas en forma vitual (Classroom), Trabajos Prácticos de Aula dictados en modalidad hibrida (virtual y consultas presenciales) y de Laboratorio (segun disponibilidad condicionada por pandemia COVID19), según las reglamentaciones rectorales y de Facultad vigentes.

- 1- Trabajos Prácticos
- Trabajos Prácticos de Aula

Cada práctico se desarrollará en una o más jornadas en los horarios convenidos para tal fin. El alumno deberá asistir, al menos, al 80% de las clases prácticas para lograr la regularidad.

• Trabajos Prácticos de Laboratorio

Se prevé la realización de Trabajos Prácticos de Laboratorio, debiendose aprobar el 100% de los mismos para lograr la regularidad. Se deberá aprobar un cuestionario escrito previo a la realización de las experiencias. El acceso a la primeras recuperaciones de cuestionarios de Trabajos Prácticos de Laboratorio se logra aprobando el 70% de los cuestionarios en primera instancia; el derecho a segunda instancia se recuperación se logra con la aprobación del 50% de las anteriores.

2- Exámenes parciales

Los Trabajos Prácticos de Aula y Laboratorio se evaluarán a través de 2 (dos) exámenes parciales cuya modalidad, fechas y horarios serán publicados con la debida antelación.

Para lograr la regularidad, se deberá aprobar el 100% de los exámenes parciales, con el 70% de las respuestas correctas, teniendo derecho a dos recuperaciones para cada parcial.

a. Condición de REGULAR

Alcanzadas las condiciones arriba mencionadas sobre los Trabajos Prácticos de Aula, Laboratorio y Exámenes Parciales, se logrará la condición de Regular.

b. Condición PROMOCION SIN EXAMEN FINAL

Esta opción no está disponible para este curso.

EXAMEN FINAL

Para lograr la aprobación del curso se deberá rendir un examen final que podrá ser escrito y/u oral en los turnos que estipule la Facultad de Química, Bioquímica y Farmacia en el calendario académico.

Considerando que el curso pertenece al segundo año de la currícula y cuenta con una carga horaria importante de trabajos prácticos de laboratorio, la realización de la parte experimental resulta esencial para completar la formación básica de los estudiantes; esto es, que aplique las Normas de Seguridad en el manejo de productos químicos y materiales de laboratorio, que adquiera destreza y habilidad en estas actividades y que logre una correcta correlación de las mismas con los conceptos teóricos brindados. Así, no existe la alternativa de EXAMEN FINAL LIBRE para esta asignatura.

IX - Bibliografía Básica

- [1] C. E. Housecroft, A. G. Sharpe "Química Inorgánica", 2da Edición, Pearson Prentice Hall, Pearson Educación S.A., Madrid, 2006.
- [2] D. F. Shriver, P. W. Atkins, "Química Inorgánica", 4ta Edición, Ed. Mc. Graw Hill, Buenos Aires, 2006.
- [3] D. F. Shriver, P. W. Atkins, C. H. Langford, "Química Inorgánica", Volúmenes 1 y 2, 2da Edición, Ed. Reverté, Barcelona, 1998.
- [4] A. G. Sharpe, "Química Inorgánica", 1era Edición, Editorial Reverté, Barcelona, 1989.
- [5] G. E. Rodgers, "Química Inorgánica: Introducción a la Química de Coordinación, Estado Sólido y Descriptiva" Mc.Graw-Hill, Madrid-Buenos Aires, 1995.
- [6] J. E. Huheey, "Química Inorgánica: Principios de Estructura y Reactividad", 2da Edición, Harla S.A., México, 1981.
- [7] S. Baggio, M. A. Blesa, H. Fernández, "Química Inorgánica. Teoría y Práctica". 1ª Ed. UNSAM EDITA, 2012.
- [8] J. C. Pedregosa y equipo colaborador, "Guías de Estudio de Química Inorgánica", UNSL, 2008.
- [9] Sitios de Internet (Consultar a los docentes a cargo de la materia para este tipo de búsquedas).

X - Bibliografia Complementaria

- [1] F. A. Cotton, G. Wilkinson, "Química Inorgánica Avanzada", 4ta Edición, Ed. Limusa, México, 1990.
- [2] D. M. P. Mingos, "Essential Trends in Inorganic Chemistry", 1era Edición, Oxford University Press, Oxford, 1998.
- [3] I. S. Butler, J. F. Harrod, "Química Inorgánica: Principios y Aplicaciones", 1era Edición, Addison-Wesley

Iberoamericana, Delaware, USA, 1992.

- [4] G. L. Miessler, D. A. Tarr, "Inorganic Chemistry", 2da Edición, Prentice Hall, New Jersey, USA, 1998.
- [5] N. Greenwood, A. Earnshaw, "Chemistry of the Elements", 5ta Edición, Pergamon Press, Oxford, 1986.
- [6] B. Douglas, D. McDaniel, J. Alexander, "Concepts and models of Inorganic Chemistry", 3era Edición, J. Wiley and Sons, New York, 1994.
- [7] F. Basolo, R. Johnson, "Química de los compuestos de coordinación", 1era Edición, Ed. Reverté, 1967.
- [8] E. J. Baran, "Química Bioinorgánica", 2da Edición, McGraw Hill/Interamericana de España, S. A., España, 1995.

XI - Resumen de Objetivos

Transmitir los conceptos de la Química Inorgánica necesarios como base para el análisis y justificación de procesos en los que participan compuestos inorgánicos. Estudio comparativo de sus propiedades analizando las tendencias periódicas. Desarrollar nuevas habilidades y destrezas mediante la aplicación de principios y conceptos vistos previamente, profundizar el grado de conocimiento y proyectar el mismo a las necesidades de cursos superiores.

XII - Resumen del Programa

Reactividad en Química Inorgánica: Procesos ácido-base y redox. Sólidos y los procesos de separación en Química Inorgánica. Química del Estado Sólido. Química de Coordinación: conceptos y teorías de enlace. Radioquímica. Estudio general fundamentado

de las tendencias de propiedades verticales, horizontales y diagonales en la Tabla Periódica.

XIII - Imprevistos

XIV - Otros

Debido a la situación derivada de la pandemia COVID-19, el plan de trabajos prácticos de laboratorio se ve modificado ya que la presencialidad es acotada o bien, suspendida. Se prevé la realización de 2 (dos) trabajos prácticos de laboratorio (Reactividad y soluciones y, Química de los elementos de la Tabla Periódica), que resumen parcialmente el plan original. Las 14 horas no consideradas en la distribución del crédito horario serán destinadas a consultas y actividades practicas de aula.

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		