

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ciencias Básicas Area: Computación

(Programa del año 2020)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
		Ord.2		
(Optativas Ingeniería Electromecánica-Plan	ING.ELECTROMECÁNICA	0/12-	2020	1° cuatrimestre
		16/15		

II - Equipo Docente

20/12-16/15) Redes de Datos

Docente Función Cargo Dedicación CARLETTO, JAVIER ALEJANDRO Prof. Responsable SEC F EX 0 Hs DEMICHELIS, JUAN PABLO JTP Semi 20 Hs Responsable de Práctico TRIMBOLI, MAXIMILIANO DANIEL Auxiliar de Práctico A.2da Simp 10 Hs

III - Características del Curso

Credito Horario Semanal						
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total		
Hs	2 Hs	2 Hs	3 Hs	7 Hs		

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración						
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas			
09/03/2020	19/06/2020	15	105			

IV - Fundamentación

Este curso forma parte de la formación tecnológica de los futuros ingenieros.

La importancia del curso reside en los conocimientos que el estudiante, futuro profesional de la ingeniería, adquiere acerca de las redes datos, la evolución de las tecnologías de redes, la convergencia de las mismas y su aplicación en el campo de las telecomunicaciones y de la industria, de tal manera que las competencias y conocimientos teórico-práctico adquiridos por el estudiante generen las bases necesarias para la administración y la gestión de proyectos de redes de datos.

V - Objetivos / Resultados de Aprendizaje

Objetivo General: Que el estudiante logre conocer los conceptos de comunicaciones en redes de datos, el hardware y software asociado a su funcionamiento en todos los niveles, tomando como base el modelo OSI y comprendiendo la importancia de su utilización tanto en el campo de las telecomunicaciones como de la industria para desenvolverse en la gestión de proyectos de redes con capacidad de diseñar una red de datos en un contexto real de su vida profesional.

Resultados de aprendizaje esperados:

Resultados conceptuales:

- Que el estudiante reconozca e identifique los distintos tipos de dispositivos y partes constituyentes de una red para la correcta selección de los mismos en el diseño de una red de datos.
- Que el estudiante interprete el direccionamiento IP en redes de datos y la interconexión entre redes para la correcta administración lógica y física en la gestión de proyectos de redes.
- Que el estudiante logre Interpretar protocolos de ruteo, transporte y seguridad en Redes y conceptos básicos sobre servicios TCP/IP.
- Que el estudiante conozca los últimos avances tecnológicos en materia de Redes y los conceptos de cableado estructurado con un enfoque orientado al diseño de Redes.
- Que el estudiante conozca los conceptos y características de las redes industriales para su correcta aplicación.

Resultados procedimentales:

- Que el estudiante planifique un proyecto de ingeniería realizando una gestión de tiempos y tareas para llevar adelante el diseño de una red de datos bajo ciertas restricciones dadas.
- Que el estudiante realice la división lógica de una red de datos implementando correctamente el direccionamiento IP para la administración y separación de dispositivos de una red LAN en función de los parámetros de seguridad, redundancia y calidad de servicio requeridos.
- Que el estudiante seleccione los dispositivos y medios de transmisión de red para dar la mejor solución a un diseño de red frente a una necesidad y presupuesto determinado.
- Que el estudiante se desempeñe en equipos multidisciplinarios de forma crítica y objetiva de acuerdo a su formación en el diseño de una red de datos real para un caso determinado.
- Que el estudiante realice los procesos de autoevaluación y coevaluación para desarrollar las competencias necesarias.
- Que el estudiante se exprese correctamente en forma oral y escrita y utilice la terminología técnica adecuada para la presentación de un proyecto en condiciones simuladas de su vida profesional.

Resultados actitudinales:

- Que el estudiante se interese por los conocimientos sobre las nuevas tecnologías en redes de datos para encontrar soluciones a determinadas demandas.
- Que el estudiante tome conciencia de la importancia de la planificación del diseño y ejecución de proyectos de ingeniería para la concreción de objetivos determinados en sus áreas de incumbencia.
- Que el estudiante se adapte al trabajo multidisciplinario, y asuma su rol en el equipo respetando las reglas de convivencia, buenos modales y responsabilidad ética para con sus pares, con el objeto de formar equipos de trabajo para dar soluciones a un problema propuesto.
- Que el estudiante se desempeñe con actitud proactiva frente a la integración de grupos de trabajo, y se desenvuelva con responsabilidad y protagonismo e interacción promotora, mostrando sentido de pertenencia para con su equipo de trabajo.
- Que el estudiante adopte una posición crítica y de autoaprendizaje constante.
- Que el estudiante asuma la importancia de la normativa vigente para el correcto diseño de una red de datos según las restricciones impuestas por el proyecto.
- Que el estudiante asuma la importancia de la seguridad y privacidad en redes de datos para el correcto diseño y administración de la red bajo las restricciones determinadas.

VI - Contenidos

UNIDAD Nº 1 - Conceptos básicos de redes de datos

- 1.1. Contenidos conceptuales:
- 1.1.1. Introducción
- 1.1.2. Generalidades de las Redes de comunicación de datos.
- 1.1.3. Modelos de Comunicación de datos ISO / TCP/IP.
- 1.1.4. Protocolos y Arquitecturas de Redes.
- 1.1.5. Tipos de Redes.

1.2. Procedimentales:

1.2.1. Descripción e interpretación de los modelos de comunicaciones

1.3. Actitudinales:

1.3.1. Valoración de la utilización de los modelos de comunicaciones

1.3.2. Interés por redes de datos y su impacto en nuestra vida e industria

UNIDAD Nº 2 – Nivel físico y proyecto de cableado estructurado

- 2.1. Contenidos conceptuales:
- 2.1.1. Introducción a la capa física Funciones de la capa física
- 2.1.2. Conceptos de canal, Relación Señal / ruido, señales y datos. Baudios y bps Tipos de modulación/codificación. Teoremas de Shannon y Nyquist.
- 2.1.3. Sistemas de Cableado y dispositivos de Redes LAN. Medios de Transmisión. Normalización.
- 2.1.4. Normas de cableado: TIA/EIA 568A/B, TIA/EIA 569, TIA/EIA 606, TIA/EIA 607.
- 2.1.5. Cableado Estructurado. Cableado Horizontal y vertical. Áreas Físicas: Área de trabajo, Sala de Equipos, Conexionado de entrada a Edificios, Gabinete de comunicaciones
- 2.1.6. Identificación del cableado, documentación, planos y simbología.
- 2.1.7. Gestión de proyectos de cableado estructurado.

2.2. Procedimentales:

- 2.2.1. Descripción de conceptos generales del hardware de comunicación de datos.
- 2.2.2. Demostración de la funcionalidad y de las características básicas del proceso de transmisión de datos.
- 2.2.3. Aplicación de la normativa necesaria para la planificación de proyectos de redes de datos.

2.3. Actitudinales

- 2.3.1. Valoración de la importancia del buen funcionamiento de los equipos de comunicación.
- 2.3.2. Disposición para investigar y compartir información acerca del proceso de la transmisión de datos.
- 2.3.3. Disposición y curiosidad por conocer los problemas de funcionamiento de las redes.
- 2.3.4. Conciencia de aplicación de la normativa de cableado en el diseño de redes de datos.
- 2.3.5. Responsabilidad en la selección de dispositivos de red en función de la relación costo/beneficio.

UNIDAD Nº 3 - Nivel de enlace

- 3.1. Contenidos conceptuales:
- 3.1.1. Estructura. Funcionamiento del nivel sub capas
- 3.1.2. El protocolo ARP Funcionamiento
- 3.1.3. Control de Acceso al Medio Acceso Controlado y Acceso basado en contención
- 3.1.4. Control de flujo.
- 3.1.5. Control de errores.
- 3.1.6. "Stop and Wait" y Uso de ventanas.

3.2. Contenidos procedimentales:

- 3.2.1. Descripción de conceptos generales de la funcionalidad del nivel de enlace.
- 3.2.2. Análisis de funcionamiento y diferencias de los sistemas de control de flujo y errores.

3.3. Contenidos actitudinales:

3.3.1. Valoración y conciencia de la importancia del nivel de enlace desde la óptica de la independencia del hardware.

UNIDAD Nº 4 - Nivel de Red

- 4.1. Contenidos conceptuales:
- 4.1.1. Redes de Área Local
- 4.1.2. Arquitectura LAN. Estándares
- 4.1.3. Ethernet, Fast Ethernet y GB Ethernet
- 4.1.4. LAN inalámbrica
- 4.1.5. IP v4 e IP v6
- 4.1.6. Subnetting VLSM CIDR
- 4.1.7. Principios de Interconexión
- 4.1.8. Ruteo estático y dinámico

4.2. Contenidos procedimentales:

- 4.2.1. Identificación de los mecanismos de comunicación lógica.
- 4.2.2. Diferenciación de separación lógica y física de redes.
- 4.2.3. Diferenciación de direccionamiento IP público y privado.
- 4.2.4. Capacidad de generar una división lógica de la red mediante la división de una determinada dirección de red.
- 4.2.5. Análisis de redes y conclusión sobre su separación en un proyecto dado.

4.3. Contenidos actitudinales:

- 4.3.1. Valoración de la importancia de la comunicación y separación lógica de redes.
- 4.3.2. Espíritu crítico de selección en la separación de redes en un proyecto determinado.

UNIDAD Nº 5 - Niveles Superiores: Transporte y Aplicación

- 5.1. Contenidos conceptuales:
- 5.1.1. Generalidades de los niveles superiores
- 5.1.2. Conceptos de protocolos de Transporte UDP
- 5.1.3. Conceptos de protocolos de Transporte TCP
- 5.1.4. Servicios TCP/IP
- 5.1.5. Introducción a la Seguridad y privacidad en redes de datos

5.2. Contenidos procedimentales:

5.2.1. Descripción de conceptos generales de la funcionalidad de niveles superiores

5.3. Contenidos actitudinales:

5.3.1. Conciencia de la importancia de la seguridad y privacidad

UNIDAD Nº 6 - Introducción a las Redes Industriales

- 6.1. Contenidos conceptuales:
- 6.1.1. Introducción a las redes industriales
- 6.1.2. Características y ventajas de las redes industriales
- 6.1.3. Tipos de redes industriales
- 6.1.4. Páginas web integradas de control.

6.2. Contenidos procedimentales:

6.2.1. Identificación de los tipos de redes industriales y sus características.

6.3. Contenidos actitudinales:

6.3.1. Conciencia de la importancia de las redes industriales y su valor en la ingeniería para la industria 4.0

VII - Plan de Trabajos Prácticos

Se prevé el desarrollo de trabajos prácticos áulicos, en relación a los contenidos de la materia.

Se prevén trabajos prácticos de investigación en temas relacionados con la materia.

Se prevén Trabajos Prácticos de Laboratorio: resolución de prácticas de laboratorio utilizando software de simulación de redes de datos y utilizando hardware específico del laboratorio de Redes de Datos.

Se prevé un proyecto y diseño de una red de datos con análisis de costos e implementación.

VIII - Regimen de Aprobación

METODOLOGÍA DE DICTADO Y APROBACIÓN DE LA ASIGNATURA

METODOLOGÍA:

El dictado de la asignatura, se realizará según lo detallado en el programa analítico y en general el dictado será teórico-práctico. El estudiante dispondrá en forma permanente de todos los trabajos prácticos, guías de estudio, y auto

evaluaciones, como así también foros de consulta y discusión en la plataforma Claroline

http://www.fica.unsl.edu.ar/claroline, y contacto permanente con los docentes a través de un grupo de WhatsApp Cada Unidad se comenzará con una clase teórica introductoria para que puedan comenzar con el práctico y se irá completando la teoría a medida que se avance en la resolución del mismo. Las unidades que correspondan, tendrán además de los prácticos de aula, prácticos de campo y/o laboratorios (con hardware dedicado o de simulación), y trabajos de investigación.

A lo largo de todo el cuatrimestre, los estudiantes realizarán un proyecto de una red de datos, donde aplicarán los conceptos aprendidos en la materia, a las distintas etapas del proyecto. Este proyecto se realizará en grupos multidisciplinarios y será expuesto frente a sus compañeros, quienes deberán realizar la evaluación del proyecto y su presentación.

En las distintas etapas del proyecto, los estudiantes deberán distribuir las tareas entre los integrantes del equipo y planificar su ejecución lo que será evaluado por parte de los docentes. Se evaluará la planificación y el compromiso con respecto al proyecto.

La avaluación final del proyecto se completará con una autoevaluación por parte de los integrantes del grupo, una coevaluación por parte de sus compañeros y la heteroevaluación por parte de los docentes.

REGIMEN DE REGULARIDAD:

Condiciones para promocionar el curso

Sólo podrán acceder a este régimen los estudiantes que cumplan con las condiciones requeridas para cursar la asignatura que estipula el régimen de correlatividades vigentes en el plan de estudios de la carrera y se encuentren debidamente inscriptos en este curso.

- Asistencia al 70% de las actividades presenciales programadas.
- Aprobación del 100% de las evaluaciones parciales prácticas o sus recuperaciones.
- Presentación de Proyecto de Ingeniería

Características de las evaluaciones:

- · Para regularizar la asignatura, los estudiantes deberán aprobar la totalidad de las evaluaciones prácticas previstas. La evaluación se realizará a través de la resolución de problemas, de características similares a lo resuelto en el práctico.
- ·· Las evaluaciones se realizarán en forma individual, fijándose tres instancias para cada evaluación.

Es decir, existirá para cada instancia de evaluación, PARCIAL, 1º RECUPERATORIO y 2º RECUPERATORIO

Régimen de Promoción sin examen final:

Sólo podrán acceder a este régimen los estudiantes que cumplan con las condiciones requeridas para cursar y aprobar la asignatura que estipula el régimen de correlatividades vigentes en el plan de estudios de la carrera y se encuentren debidamente inscriptos en este curso.

Condiciones para promocionar el curso sin examen final (modalidad teórico-práctica):

- ·Asistencia al 70% de las actividades presenciales programadas.
- ·Aprobación del 100% de las evaluaciones parciales teóricas o sus recuperaciones, con un mínimo de 7 (siete) puntos.
- · Aprobación del 100% de las evaluaciones parciales prácticas o sus recuperaciones.
- ·Aprobación de la actividad final integradora: Presentación de Proyecto de Ingeniería

Características de las evaluaciones:

- · Las evaluaciones constarán de dos etapas, una teórica y una práctica (Evaluadas en forma conjunta). La primera, realizarán a través de un examen donde el estudiante deberá exponer o responder las preguntas que se le formulen acerca de los temas contenidos en las Unidades Temáticas evaluadas. La segunda se realizará a través de la resolución de problemas, de características similares a lo resuelto en el práctico.
- · Las evaluaciones se realizarán en forma individual, fijándose tres instancias para cada evaluación. Es decir, existirá para cada instancia de evaluación, PARCIAL, 1º RECUPERATORIO y 2º RECUPERATORIO Pudiendo alcanzarse la condición de promoción en cualquiera de las instancias.

Actividad final integradora

Al final del curso se llevará a cabo la actividad final integradora que constará en la defensa del proyecto de ingeniería desarrollado, y la evaluación de un proyecto de sus compañeros.

La nota final en la materia surgirá del promedio ponderado de todas las notas obtenidas en los distintos exámenes, teóricos y prácticos y la actividad final integradora y deberá ser superior a 7 puntos, según la siguiente fórmula:

Nota=0.6 x (Nota Actividad final integradora)+0.4(Promedio de Notas de exámenes parciales teóricos y prácticos)

Régimen de Promoción con examen final para Estudiantes Libres:

Sólo podrán acceder a este régimen los estudiantes que registraron su inscripción anual en el período establecido y aquellos que estén comprendidos en alguna de las siguientes opciones;

- a. Los estudiantes que estando inscriptos en el curso como promocionales o regulares, no cumplieron con los requisitos estipulados en el programa para esas categorías.
- b. Los estudiantes no inscriptos para cursar, que cumplen con las correlativas requeridas para rendir el curso.
- c. los estudiantes que han obtenido la regularización en el curso, pero el plazo de su validez ha vencido.

Para rendir un curso como estudiante libre, éste deberá inscribirse en los turnos de exámenes estipulados en el calendario de la Universidad, al igual que los estudiantes regulares. Y deberán contactarse previamente con el equipo docente del curso, para la realización de un proyecto de ingeniería.

Características de las evaluaciones:

- · El examen versará sobre la totalidad del último programa, contemplando los aspectos teóricos y prácticos del curso.
- · El examen constará de una instancia referida a la presentación y defensa del proyecto de ingeniería donde el estudiante de cuenta del logro de los objetivos en cuanto a los conocimientos del saber y del saber hacer.

Para aprobar el curso el estudiante deberá obtener como calificación mínima de 4 (cuatro) puntos como promedio de las notas obtenidas en la instancia práctica y en la teórica, no pudiendo ser menor a 4 (cuatro) en cada una de ellas.

- · La modalidad del examen final podrá ser escrita u oral de acuerdo a como lo decida el tribunal evaluador.
- · Se aconseja al estudiante que desee rendir un examen libre ponerse en contacto previo con el responsable del curso para recabar mayor información.

IX - Bibliografía Básica

- [1] Comunicaciones y Redes de Computadores: William Stallings 7ª Edición Prentice Hall [Disponible en Biblioteca Villa Mercedes y UNSL]
- [2] Redes de Computadoras: A. Tanenbaum. 4a Edición, Prentice Hall. [Disponible en Biblioteca Biblioteca Villa Mercedes y UNSL]
- [3] Comunicaciones Industriales Guía Práctica Aquilino Rodriguez Penin Ediciones Técnicas Marcombo 2008 [Disponible en Biblioteca Villa mercedes]
- [4] Manuales CISCO [A adquirir]
- [5] Apunte de Cableado Estructurado
- [6] Apunte sobre Redes Industriales.

X - Bibliografia Complementaria

- [1] Redes de computadores: un enfoque descendente basado en Internet, 2ª edición. Jim Kurose, Keith Ross [Disponible en Biblioteca Villa Mercedes]
- [2] Internetworking with TCP/IP: Vol. I, D. Commer, 3a Edición, Prentice Hall.
- [3] Redes e Internet de Alta Velocidad Rendimiento y Calidad de Servicio : William Stallings 2ª Edición Prentice Hall

- [4] Sistemas de Regulación y Control Automáticos Comunicaciones Industriales Pedro Morcillo Ruiz Julián Cocera Rueda Paraninfo -2000 [Disponible en Biblioteca Villa Mercedes]
- [5] Comunicaciones y Redes de Procesamiento de Datos Nestor Gonzales Sainz McGraw Hill -1987 [Disponible en Biblioteca Villa Mercedes]
- [6] Sistemas Electrónicos de Comunicaciones Frenzel Editorial Alfaomega 2003 [Disponible en Biblioteca Villa Mercedes]
- [7] Seguridad para comunicaciones inalámbricas Nichols y Lekkas 2003 McGraw Hill [Disponible en Biblioteca Villa Mercedes]

XI - Resumen de Objetivos

Conocer los conceptos básicos de comunicaciones en redes de datos y su funcionamiento en todos los niveles, tomando como base el modelo OSI.

XII - Resumen del Programa

UNIDAD Nº 1 - Conceptos básicos de redes de datos

UNIDAD Nº 2 - Nivel físico

UNIDAD Nº 3 - Nivel de enlace

UNIDAD Nº 4 - Nivel de Red

UNIDAD Nº 5 - Nivel de Transporte y Nivel de Aplicación

UNIDAD Nº 6 – Introducción a las Redes Industriales

XIII - Imprevistos

--- Para el caso de medidas de fuerza que alteren sustancialmente el dictado de la asignatura, se implementarán clases y consultas en modalidad no presencial mediante videoconferencia, sistemas de autoestudio y consultas mediante la utilización de plataformas on line, para posibilitar que los estudiantes alcancen los objetivos previstos en este programa

XIV - Otros