

# Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas

(Programa del año 2019)

# **Area: Matematicas**

#### I - Oferta Académica

| Materia    | Carrera           | Plan  | Año  | Período         |
|------------|-------------------|-------|------|-----------------|
| ALGEBRA II | ING. EN COMPUT.   | 28/12 | 2019 | 2° cuatrimestre |
|            |                   | 026/1 |      |                 |
| ALGEBRA II | ING. INFORM.      | 2-    | 2019 | 2° cuatrimestre |
|            |                   | 08/15 |      |                 |
| ALGEBRA II | ING.ELECT.O.S.D   | 13/08 | 2019 | 2° cuatrimestre |
| ALGEBRA II | ING.EN MINAS      | 6/15  | 2019 | 2° cuatrimestre |
| ALGEBRA II | LIC.CS.COMP.      | 32/12 | 2019 | 2° cuatrimestre |
| ÁLGEBRA II | ING. EN ALIMENTOS | 38/11 | 2019 | 2° cuatrimestre |
| ÁLGEBRA II | ING. EN ALIMENTOS | 7/08  | 2019 | 2° cuatrimestre |

## II - Equipo Docente

| Docente                      | Función                 | Cargo      | Dedicación |
|------------------------------|-------------------------|------------|------------|
| PASTINE, ADRIAN GABRIEL      | Prof. Responsable       | P.Adj Exc  | 40 Hs      |
| TARAZAGA, PABLO              | Prof. Colaborador       | P.Tit. Exc | 40 Hs      |
| BARROZO, MARIA EMILCE        | Responsable de Práctico | JTP Exc    | 40 Hs      |
| GARCIA ALVAREZ, PABLO JAVIER | Responsable de Práctico | A.1ra Simp | 10 Hs      |
| MINI, MARIA AMELIA           | Responsable de Práctico | A.1ra Exc  | 40 Hs      |
| SCHVAGER, BELEN BETSABE      | Responsable de Práctico | A.1ra Semi | 20 Hs      |
| LEDEZMA, AGUSTINA VICTORIA   | Auxiliar de Práctico    | A.2da Simp | 10 Hs      |
| SCHVÖLLNER, VICTOR NICOLAS   | Auxiliar de Práctico    | A.2da Simp | 10 Hs      |

## III - Características del Curso

| Credito Horario Semanal |          |                   |                                       |       |
|-------------------------|----------|-------------------|---------------------------------------|-------|
| Teórico/Práctico        | Teóricas | Prácticas de Aula | Práct. de lab/ camp/ Resid/ PIP, etc. | Total |
| Hs                      | 3 Hs     | 3 Hs              | Hs                                    | 6 Hs  |

| Tipificación                     | Periodo         |  |
|----------------------------------|-----------------|--|
| C - Teoria con prácticas de aula | 2° Cuatrimestre |  |

| Duración   |            |                     |                   |  |
|------------|------------|---------------------|-------------------|--|
| Desde      | Hasta      | Cantidad de Semanas | Cantidad de Horas |  |
| 05/08/2019 | 16/11/2019 | 15                  | 90                |  |

## IV - Fundamentación

El Álgebra Lineal provee a los tecnólogos e ingenieros los conocimientos necesarios para manejar y aplicar los conceptos del álgebra matricial en el planteamiento y solución de sistemas de ecuaciones y de problemas relacionados, todos ellos de habitual utilización en la actuación profesional. El álgebra lineal es una herramienta fundamental para el planteamiento y desarrollo de conceptos que permitan entender y asimilar conocimientos de otras áreas de la ingeniería y la tecnología aplicada.

Con respecto a los alumnos de Matemática y Física, el Álgebra Lineal es una disciplina fundamental y transversal a todas las

## V - Objetivos / Resultados de Aprendizaje

- Desarrollar el pensamiento abstracto de tipo matemático, contribuyendo así a la formación matemática del estudiante.
- Conducir al estudiante al conocimiento y aplicación de las ideas básicas del Álgebra Lineal haciendo énfasis en el análisis y
  consecuencias de los diferentes teoremas, ilustrando su aplicabilidad en numerosos ejemplos.
- Aplicar adecuadamente los conceptos del Álgebra Matricial y su operación en la solución de sistemas de ecuaciones lineales
- Conocer y utilizar los elementos y las técnicas del Álgebra Lineal para el trabajo con matrices, sistemas de ecuaciones, espacios vectoriales, valores y vectores propios y para la solución de problemas que involucran estos conceptos.
- Reconocer la estructura de espacio vectorial y realizar actividades de aplicación de la misma.
- Comprender el concepto de transformación lineal, su importancia y su manejo a través de matrices.

#### VI - Contenidos

#### **UNIDAD 1: Determinantes**

Definición. Propiedades. Desarrollo por cofactores y aplicaciones. Matriz adjunta. Inversa de una matriz. Regla de Cramer.

#### UNIDAD 2: Espacios vectoriales reales.

Definición de espacios vectoriales. Ejemplos. Subespacios vectoriales. Combinación lineal de vectores. Independencia lineal. Definición de conjunto de generadores de un espacio vectorial. Bases y dimensión. Espacio nulo y nulidad de una matriz. Relación entre sistemas lineales no homogéneos y sistemas homogéneos. Rango de una matriz, espacios filas y columnas. Rango y singularidad. Aplicaciones del rango a los sistemas lineales no homogéneo Coordenadas y cambio de base.

#### UNIDAD 3: Ortogonalidad.

Definición de conjuntos ortogonales y ortonormales en R. Bases ortogonales y ortonormales Proceso de ortogonalización de Gram-Schmidt. Complementos ortogonales. Suma directa de subespacios vectoriales. Relaciones entre los espacios vectoriales fundamentales asociados con una matriz. Proyecciones y aplicaciones. Factorización QR de una matriz. Mínimos cuadrados. Mínimos cuadrados mediante factorización QR. Ajuste por mínimos cuadrados.

#### UNIDAD 4: Valores propios, vectores propios y diagonalización.

Definición. Polinomio característico. Espacios propios. Matrices semejantes (similares) Diagonalización. Aplicaciones. Diagonalización de matrices simétricas. Definición de forma cuadrática real. Teorema de los ejes principales. Secciones cónicas.

#### **UNIDAD 5: Transformaciones lineales y Matrices.**

Definición y ejemplos. Imagen y Núcleo de una transformación lineal. La matriz de una transformación lineal. Cambio de bases. Revisión de la diagonalización, de la semejanza y ortogonalización de matrices.

Aplicaciones: Geometría Analítica y Programación Lineal.

### VII - Plan de Trabajos Prácticos

Los trabajos prácticos consistirán en resoluciones de ejercicios sobre los temas desarrollados en teoría.

## VIII - Regimen de Aprobación

La materia constará de dos exámenes parciales, y de una evaluación constante por medio de trabajos prácticos. Los estudiantes que aprueben todos los trabajos prácticos, y ambos parciales con al menos 7 podrán acceder a la aprobación de la materia sin examen final, rindiendo un examen integrador. Para regularizar la materia deberán aprobar un 70% de los trabajos prácticos y obtener al menos un 5,50 en cada parcial. Cada parcial contará con dos recuperaciones.

## IX - Bibliografía Básica

- [1] Algebra Lineal. B. Kolman yD. Hill. Prentice Hall Continental Octava edición (2006)
- [2] Algebra Lineal. K. Hoffman y R. Kunze. Prentice Hall Hispanoamericana S.A., México, 1973. Primera edición,

[3] • Grossman, S. I. (1996) Álgebra lineal con aplicaciones. Mc Graw Hill.

## X - Bibliografia Complementaria

- [1] Introducción al Algebra Lineal. Howard Anton. Ed.Limusa
- [2] Precalculo, Michael Sullivan, Prentice Hall, Cuarta edición (1997)

## XI - Resumen de Objetivos

- Desarrollar el pensamiento abstracto de tipo matemático, contribuyendo así a la formación matemática del estudiante.
- Conducir al estudiante al conocimiento y aplicación de las ideas básicas del Álgebra Lineal haciendo énfasis en el análisis y consecuencias de los diferentes teoremas, ilustrando su aplicabilidad en numerosos ejemplos.
- Aplicar adecuadamente los conceptos del Álgebra Matricial y su operación en la solución de sistemas de ecuaciones lineales.
- Conocer y utilizar los elementos y las técnicas del Álgebra Lineal para el trabajo con matrices, sistemas de ecuaciones, espacios vectoriales, valores y vectores propios y para la solución de problemas que involucran estos conceptos.
- Reconocer la estructura de espacio vectorial y realizar actividades de aplicación de la misma.
- Comprender el concepto de transformación lineal, su importancia y su manejo a través de matrices.

## XII - Resumen del Programa

**UNIDAD 1: Determinantes** 

UNIDAD 2: Espacios vectoriales reales.

UNIDAD 3: Ortogonalidad.

UNIDAD 4: Valores propios, vectores propios y diagonalización.

UNIDAD 5: Transformaciones lineales y Matrices.

UNIDAD 6: Elementos de Cálculo Numérico

## **XIII - Imprevistos**

Ante cualquier imprevisto comunicarse con: agpastine@unsl.edu.ar

### XIV - Otros