

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ciencias Básicas Area: Química

(Programa del año 2019)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
		Ord.2		
Química General Aplicada	ING.ELECTROMECÁNICA	0/12-	2019	1° cuatrimestre
		16/15		
Química General Aplicada				
	ING. MECATRÓNICA	2-Mo	2019	1° cuatrimestre
		d21/1		
		5		

II - Equipo Docente

Docente	Función	Cargo	Dedicación
RUIZ, MARIA LUCIA	Prof. Responsable	P.Adj Exc	40 Hs
FERNANDEZ, CECILIA DE LOS ANGE	Responsable de Práctico	JTP Semi	20 Hs
ROSSI, RICARDO ENRIQUE	Responsable de Práctico	JTP Exc	40 Hs
COSTANZO, MARIA MAGDALENA	Auxiliar de Práctico	JTP Semi	20 Hs
DEL NEGRO, NATALIA ELIZABETH	Auxiliar de Práctico	A.1ra Semi	20 Hs
QUIROGA, MERCEDES BEATRIZ	Auxiliar de Práctico	A.1ra Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Aula Práct. de lab/ camp/ Resid/ PIP, etc.	
105 Hs	3 Hs	3 Hs	1 Hs	7 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
06/03/2019	21/06/2019	15	105

IV - Fundamentación

El contenido de la asignatura se enfoca en torno a los fundamentos químicos que un estudiante de ingeniería necesita para resolver los problemas de los tiempos actuales. Estos contenidos proporcionarán al estudiante una base científica firme en química, dándoles los conocimientos previos necesarios para cursar otras asignaturas de la currícula.

V - Objetivos / Resultados de Aprendizaje

El objetivo fundamental es que los estudiantes tengan un concepto claro de hasta qué punto la química determina o afecta nuestra manera de ver el mundo que nos rodea, de someterlo a nuestro control y de respetarlo, que comprendan las leyes y los

modelos químicos y que muestren cierta cautela al enfrentarse a problemas de impacto social relacionados con la química. Además establecer que, como ciencia, depende del razonamiento científico antes que de la deducción pura, y se pretende enseñar a pensar científicamente.

VI - Contenidos

TEMA 1

Materia. Propiedades de la materia. Elemento, compuesto y mezcla. Estado y cambio de estado de la materia. Teoría atómica de Dalton. Símbolos, fórmulas y ecuaciones. Estequiometría. Reactivo limitante, pureza de los reactivos y rendimiento de la reacción.

TEMA 2

Gases. Ley de Boyle y Mariotte. Ley de Charles y Gay Lussac. Ecuación general del gas ideal. Ley de Dalton de las presiones parciales. Desviación del comportamiento ideal. Gases reales.

TEMA 3

Estructura atómica. Ondas luminosas. Relación entre frecuencia y energía. Partículas atómicas. Teoría del átomo de Bohr. Espectros atómicos. Teoría moderna del átomo de hidrógeno. Principio de incertidumbre. Mecánica cuántica. Orbitales atómicos. Números cuánticos. Descripción de los orbitales del hidrógeno. Átomos polielectrónicos.

TEMA 4

Tabla periódica. Relación entre estructura atómica y tabla periódica. Variación de las propiedades a lo largo de la tabla periódica: potencial de ionización, afinidad electrónica, tamaño atómico e iónico. Uniones químicas. Enlace iónico. Enlace covalente. Moléculas polares. Uniones metálicas. Otras fuerzas de unión.

TEMA 5

Líquidos puros y soluciones. Presión de vapor. Efecto de la temperatura sobre la presión de vapor. Diagramas de fases. Reacciones químicas en solución. Formas de expresar la concentración. Presiones de vapor de las soluciones. Propiedades coligativas de no electrolitos. Aplicaciones de las propiedades coligativas.

TEMA 6

Estado sólido. Formas cristalinas. Red cristalina y celda unidad. Elementos cristalográficos y sistemas. Empaquetamiento compacto. Estructura de los cristales. Tipos de enlaces en los sólidos. Conductores, semiconductores y aislantes

TEMA 7

Nociones de cinética. Nociones de equilibrio químico. Constante de equilibrio. Soluciones electrolíticas. Ácidos y bases. Autoionización del agua. pH y pOH. Disociación de ácidos y bases.

TEMA 8

Reacciones de óxido-reducción. Electroquímica. Pilas. Fuerza electromotriz. Potenciales normales de electrodos. Electrólisis. Leyes de Faraday. Corrosión y protección de metales.

TEMA 9

Reacciones nucleares. Estabilidad del núcleo. Radiactividad natural y artificial. Conversión masa-energía. Aplicaciones de los isótopos radiactivos. Fisión y fusión nuclear.

TEMA 10

Hidrocarburos. Hidrocarburos saturados: alcanos. Hidrocarburos no saturados: alquenos y alquinos. Hidrocarburos aromáticos. Grupos funcionales en las moléculas orgánicas. Combustibles: sólidos, líquidos y gaseosos. Petróleo. Obtención de fracciones del petróleo. Índice de octanos.

TEMA 11

Plásticos. Propiedades de los plásticos. Resinas termoestables y resinas termoplásticas. Reacciones por adición y reacciones por condensación. Polímeros. Elastómeros. Caucho natural y caucho sintético. Plásticos usados en electricidad y electrónica

VII - Plan de Trabajos Prácticos

A.- Trabajos Prácticos de Aula

Resolverán problemas relacionados con los temas desarrollados en las Clases teóricas

B.- Trabajos Prácticos de Laboratorio

Temas a desarrollar:

LAB. Nº 1: Reconocimiento del material de laboratorio, normas de uso.

LAB. Nº 2: Preparación de soluciones

LAB. Nº 3: Determinación de pH

LAB. Nº 4: Pilas, Electrólisis y Corrosión

En todos los trabajos prácticos de laboratorio se pondrá especial énfasis en las normas de seguridad a tener en cuenta en el laboratorio, las cuales se entregarán antes de comenzar el LAB. Nº 1

VIII - Regimen de Aprobación

RÉGIMEN DE ESTUDIANTES REGULARES

El dictado de la asignatura será del tipo teórico practico:

- I.- Prácticos de aula
- a) Se exige asistencia a un 80 % de los prácticos de aula
- b) Al finalizar cada clase de problemas el jefe de trabajos prácticos firmara el cuaderno donde se realizaron los trabajos.
- c) Se considerara ausente el estudiante que incurra en una tardanza superior a los 10 minutos.
- d) El estudiante deberá llevar al día un cuaderno o carpeta, con los problemas resueltos en clase.
- II.- Prácticos de laboratorio: ejecución de los trabajos prácticos
- a) Se requiere una asistencia del 100 % a las clases de laboratorio.
- b) Los trabajos de laboratorio se podrán recuperar, existiendo para ello una clase recuperadora antes de finalizar el cuatrimestre. Solo puede recuperar un 35% de los trabajos prácticos
- c) Antes de realizar el trabajo de laboratorio el estudiante deberá responder favorablemente a un cuestionario sobre el tema del trabajo de laboratorio, el que deberá ser respondido satisfactoriamente para ser considerado como presente.
- d) Finalizado el trabajo de laboratorio el estudiante deberá mostrar al docente encargado, el informe de los resultados obtenidos.
- e) El informe debe ser individual.

III.- Parciales

Se tomaran tres parciales que incluirán problemas y preguntas sobre los trabajos prácticos de laboratorio realizados. Según ordenanza C.C. Nº 32/14, cada parcial tendrá dos recuperaciones. La primera recuperación se llevará a cabo en no menos de 48 hs de publicado el resultado del parcial.

IV.-Régimen de aprobación de la asignatura.

El requisito de aprobación de la asignatura para los estudiantes que regularicen la misma, implica aprobar un examen final. Este examen es oral y en la misma desarrollarán los conceptos teóricos y sus relaciones.

OBSERVACIONES

RÉGIMEN DE ESTUDIANTES LIBRES

El examen libre constara de dos partes.

a) evaluación sobre prácticos.

b) evaluación sobre teoría.

Deberá aprobar un examen escrito, el que constara de problemas del tipo de los desarrollados en clase, debiendo resolver el 70 % de los mismos. Si aprueba el examen de problemas deberá proceder a la realización de un trabajo práctico de laboratorio, el que se elegirá mediante sorteo, dentro de los trabajos prácticos que se realizaron durante el año. Una vez realizado el trabajo práctico deberá elevar el informe al tribunal de la mesa examinadora para que analice los resultados obtenidos, de ser estos satisfactorios, pasará a la evaluación sobre teoría. Sobre los temas desarrollados en teoría se lo evaluara de la misma forma que se hizo para un estudiante regular.

RÉGIMEN DE PROMOCIÓN

Este curso podrá aprobarse mediante régimen de promoción sin examen final.

Los estudiantes promocionaran el curso si al finalizar el dictado del mismo, hubieran cumplido satisfactoriamente con las siguientes condiciones:

- a.- Haber cumplido con las exigencias para lograr la condición de estudiante regular.
- b.- Aprobar además 2 exámenes sobre los temas de teoría que se tomarán en la última semana de mayo y la primera semana de junio respectivamente, las que se aprobarán con un porcentaje superior o igual al 70%. El segundo examen contendrá el 75% de las preguntas sobre temas a ser evaluados en esa instancia más un 25% de preguntas sobre temas correspondientes a la evaluación anterior.

IX - Bibliografía Básica

- [1] Raymond Chang, Kenneth A. Godsby. Química, Ed. Mc Graw Hill, 11° edición, 2013.
- [2] Whitten-Davis-Peck. Química General. Ed. Mc Graw Hill, 5° edición, 2007
- [3] P. W. Atkins. Química General. Ediciones Omega, S.A. 1992

X - Bibliografia Complementaria

- [1] Petrucci Ralph y Harwood William. Química General Principios y aplicaciones Modernas, Ed. Prentice-Hall, 7º edición, 2003
- [2] P. Atkins, L. Jones. Química, molécula, materia, cambio. Ed. Omega, S.A., 3º edición,1998
- [3] Slabaugh Parsons, Química General. Ed. Limusa, México, 1998.
- [4] Brady, James. Química Básica: Principios y Estructura. 2º edición. Jhon Wiley, 1996.
- [5] Ebbing, General Chemistry, Houghton Mifflin Company Boston, 1984
- [6] Masterton Slowinsky, Química General Superior. Ed. Interamericana. España 2003.
- [7] Apuntes de la cátedra.
- [8] Moore, Jhon. Química, 1º edición, 1981.

XI - Resumen de Objetivos

Que los estudiantes puedan comprender los fenómenos fisicoquímicos del mundo que nos rodea

XII - Resumen del Programa

- 1.- Sistemas materiales
- 2.- Gases
- 3.- Estructura atómica
- 4.- Tabla periódica
- 5.- Líquido puros y soluciones
- 6.- Estado sólido
- 7.- Equilibrio
- 8.- Electroquímica
- 9.- Reacciones nucleares
- 10.-Hidrocarburos
- 11.-Polímeros

XIII - Imprevistos		
XIV - Otros		