

# Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales

Area: Area V: Automatas y Lenguajes

Departamento: Informatica

### I - Oferta Académica

| Materia               | Carrera      | Plan Año   | Período         |
|-----------------------|--------------|------------|-----------------|
| AUTOMATAS Y LENGUAJES | LIC.CS.COMP. | 32/12 2019 | 1° cuatrimestre |
| AUTOMATAS Y LENGUAJES | LIC.CS.COMP. | 006/0      | 1° cuatrimestre |
| AUTOMATAS I LENGUAJES | LIC.CS.COMP. | 5          | 1 Cuaumiesue    |

(Programa del año 2019)

# II - Equipo Docente

| Docente                   | Función                 | Cargo      | Dedicación |
|---------------------------|-------------------------|------------|------------|
| ROGGERO, PATRICIA BEATRIZ | Prof. Responsable       | P.Adj Exc  | 40 Hs      |
| APOLLONI, JAVIER MARIANO  | Prof. Co-Responsable    | P.Adj Exc  | 40 Hs      |
| FUNEZ, DARIO GUSTAVO      | Responsable de Práctico | JTP Exc    | 40 Hs      |
| VILLEGAS, MARIA PAULA     | Auxiliar de Práctico    | A.1ra Simp | 10 Hs      |

## III - Características del Curso

| Credito Horario Semanal |          |                   |                                       |       |
|-------------------------|----------|-------------------|---------------------------------------|-------|
| Teórico/Práctico        | Teóricas | Prácticas de Aula | Práct. de lab/ camp/ Resid/ PIP, etc. | Total |
| Hs                      | 3 Hs     | 3 Hs              | 1 Hs                                  | 7 Hs  |

| Tipificación                                   | Periodo         |  |
|------------------------------------------------|-----------------|--|
| B - Teoria con prácticas de aula y laboratorio | 1° Cuatrimestre |  |

| Duración   |            |                     |                   |  |
|------------|------------|---------------------|-------------------|--|
| Desde      | Hasta      | Cantidad de Semanas | Cantidad de Horas |  |
| 13/03/2019 | 21/06/2019 | 15                  | 105               |  |

## IV - Fundamentación

El presente curso está destinado a alumnos avanzados de la Lic. en Ciencias de la Computación. Se estudian conceptos formales relacionados con la teoría de lenguajes, los cuales incluyen autómatas y gramáticas. La aplicación de estos conceptos a los aspectos básicos del análisis lexicográfico y el análisis sintáctico.

El alumno debe aprender y comprender la forma en que funciona cada autómata, y la correspondencia entre autómatas, gramáticas y lenguajes.

Por otro lado el curso provee los conceptos necesarios para el posterior estudio de computabilidad y complejidad de problemas.

## V - Objetivos / Resultados de Aprendizaje

Al finalizar el curso se espera que el alumno sea capaz de comprender los conceptos centrales de la teoría de lenguajes formales, autómatas y gramáticas, además de la forma en que funciona cada autómata y la correspondencia entre autómata, gramática y lenguajes, particularmente lenguajes de programación, como así también el estudio e implementación de un analizador lexicográfico.

También se procura introducir al alumno en el estudio de conceptos de análisis sintáctico, junto con las respectivas técnicas de análisis (Top-Down y Bottom-Up), dando para estos conceptos el marco teórico.

# VI - Contenidos

### Bolilla 1.

Repaso General:

Símbolo. Alfabeto. Sentencia. Lenguaje. Representación de los lenguajes. Dispositivos generadores y reconocedores de lenguajes. Gramáticas y Autómatas, descripción general. Relación general entre autómata y gramática. Jerarquía de Chomsky.

#### Bolilla 2.

Lenguajes Regulares (Tipo 3). Autómata Finito Determinístico y No-Determinístico (Repaso). Equivalencia de aceptación de un AFD y un AFND. AFND con transiciones épsilon. Equivalencia de aceptación de un AFD y un AFND-épsilon. Expresiones regulares. Propiedades de las Expresiones Regulares. Equivalencias entre expresiones regulares y autómatas finitos. Gramáticas regulares (Tipo 3)(Repaso). Equivalencia entre: lenguajes regulares, lenguajes aceptados por autómatas finitos determinísticos y gramáticas regulares. Autómata finito con acciones semánticas. Analizador lexicográfico o Scanner, uso de herramientas generadoras.

#### Bolilla 3.

Propiedades de los lenguajes regulares: Propiedades de clausura, demostración y usos de dichas propiedades, Lema de Pumping (bombeo), demostración y su aplicación, ejemplos. Minimización de autómatas finitos determinísticos: testeo de estados equivalentes, transitividad de estados equivalentes, estados mutuamente equivalentes, algoritmo de minimización.

### Bolilla 4.

Gramáticas y lenguajes libres del contexto (Tipo 2). Motivación e introducción. Árbol de derivación. Frontera. Forma sentencial izquierda y derecha. Ambigüedad. Autómatas a Pila (Push Down). Configuraciones. Lenguaje aceptado por Pila Vacía y Estado Final. Equivalencia de aceptación por Pila Vacía y Estado Final. Equivalencia entre gramáticas libres del contexto y autómatas push-down. Autómata push-down determinístico. Análisis sintáctico. Técnica de Análisis Top-Down y Bottom-up. Implementación de Analizadores Sintácticos utilizando Autómatas Push-Down.

#### Bolilla 5

Propiedades de los lenguajes libres del contexto: Formas Normales. Transformaciones sobre las gramáticas libres del contexto: eliminación de símbolos inútiles, eliminación de producciones nulas, eliminación de producciones simples, eliminación de recursión a izquierda, Forma Normal de Chomsky. Lema de Pumping para gramáticas libres del contexto y su aplicación. Propiedades de clausura de los lenguajes libres del contexto.

### Bolilla 6.

Lenguajes Irrestrictos. Introducción a las Máquinas de Turing y a las Gramáticas Irrestrictas. Lenguajes Sensitivos del Contexto o Tipo 1. Autómata Linealmente Acotado. Gramáticas Sensitivas del Contexto. Lenguajes Recursivos.

## VII - Plan de Trabajos Prácticos

Prácticos de Aula

Práctico 1: Alfabetos - Lenguajes - Representación de lenguajes

Práctico 2: Autómatas Finitos Determinísticos y No Determinísticos - Expresiones Regulares - Gramáticas Regulares.

Práctico 3: Propiedades de los Lenguajes Regulares - Minimización - Lema de Pumping.

Práctico 4: Gramáticas Libres del Contexto - Autómatas Push-Down - Análisis Sintáctico.

Práctico 5: Propiedades de los Lenguajes Libres de Contexto - Lema de Pumping - Formas Normales.

Práctico 6: Máquina de Turing - Autómata linealmente acotado - Gramáticas Sensibles del Contexto.

### Práctico de Laboratorio 1:

Análisis Lexicográfico: diseñar un programa de computadora para resolver un ejercicio propuesto por la cátedra referente al tema, utilizando herramientas de diseño de analizadores lexicográficos y entregar el ejercicio resuelto.

#### Práctico de Laboratorio 2:

El alumno deberá codificar una aplicación que realice búsqueda de patrones empleando expresiones regulares en el lenguaje Python, sobre una base de datos de noticias de diferentes temáticas.

# VIII - Regimen de Aprobación

El alumno puede regularizar (luego rendir el examen final) o promocionar, las condiciones son:

- A. Régimen para Alumnos Regulares
- 1. Tener un mínimo de 60% de asistencia a las clases prácticas.
- 2. Entrega del 70% de los ejercicios de prácticos de aula solicitados.
- 3. Aprobación de los prácticos de laboratorio propuestos.
- 4. Aprobar 2 exámenes parciales prácticos o alguna de sus respectivas recuperaciones. Tal como lo establece la reglamentación vigente, Ord 32/14 CS, que modifica el Régimen de Regularización de Materias establecido según Ord. 13/03 CS, se otorgan dos (2) recuperaciones por cada parcial.

#### Nota:

- 1. Setenta por ciento (70%) es el porcentaje mínimo, de los ejercicios ha resolver, necesario para aprobar cada parcial. Además al menos el 50% de cada uno de los ejercicios involucrados en el parcial deberán ser completados para considerar su aprobación.
- 2. Si cualquier punto no fuera cumplimentado implicará que el alumno pase a condición de libre.
- B. Régimen para Alumnos Promocionales
- 1. Idem a lo requerido para alumnos regulares, salvo que:
- a. Tener un mínimo de 80% de asistencia a las clases prácticas y teóricas, a las clases de consulta y discusión de determinados contenidos teóricos que la cátedra considere necesarios.
- 2. Aprobar, con un mínimo de 7 (siete), un examen integrador oral y/o escrito al final del cuatrimestre.

La nota final se computará promediando las notas obtenidas en cada uno de los puntos mencionados previamente.

- C. El curso no admite rendir el examen final en condición de Libre.
- D. El examen final puede ser oral y/o escrito.

# IX - Bibliografía Básica

- [1] Hopcroft J. Ullman J. Motwani R. Introduction to automata theory, languages and computation. 3° Edición. Addison Wesley (2006).
- [2] Hopcroft J. Ullman J. Introduction to automata theory, languages and computation. Addison Wesley (1979).
- [3] Aho A. Ullman J. The theory of parsing, translation and compiling. Vol. I. Prentice Hall (1973).
- [4] Hopcroft J. Ullman J. Formal languages and their relation to automata. Addison Wesley (1972).
- [5] Sudkamp, Thomas A. Languages and Machines (An Introduction to the Theory of Computer Science). 3° Edición. Addison Wesley (2005).
- [6] Wood, Derick. Theory of computation. John Wiley & Sons, Inc. (2003).
- [7] Ramón Brena Pinero "Lenguajes Formales y Autómatas" (1997).
- [8] Apuntes de la Cátedra de "Análisis Lexicográfico y Herramienta JFlex" (2014).

# X - Bibliografia Complementaria

- [1] Denning P.- Dennis J.- Qualitz J. Machine, languages and computation. Prentice-Hall (1978).
- [2] Davis Weyuker. Computability, Complexity, and Languages. Academic Press (1992).
- [3] Aho A. Sethi R. Ullman J. Compilers: Principles, Techniques and Tools. Addison Wesley (1990).
- [4] Sipser Michael, Introduction to the Theory of Computation. PWS Publishing Company (1997).

# XI - Resumen de Objetivos

El objetivo primario de este curso es introducir al alumno en los aspectos teóricos de Ciencias de la Computación que incluyen:

- El establecimiento de jerarquías y estudio de las propiedades de los distintos tipos de lenguajes, principalmente lenguajes de programación, a través de diferentes formalizaciones (dispositivos reconocedores y generadores).
- El estudio de análisis sintáctico y técnicas de análisis (Análisis Top-Down y Bottop-up).

# XII - Resumen del Programa

### PROGRAMA SINTETICO:

Bolilla 1. Definiciones básicas: Lenguaje. Representación de los lenguajes. Dispositivos generadores y reconocedores. Jerarquía de Chomsky.

Bolilla 2. Lenguajes Regulares (Tipo 3): Autómata Finitos Determinísticos y No Determinísticos, Expresiones Regulares y Gramáticas Regulares. Analizador lexicográfico o Scanner.

Bolilla 3. Propiedades de los lenguajes regulares. Minimización.

Bolilla 4. Gramáticas y lenguajes libres del contexto (Tipo 2). Autómatas a Pila (Push Down). Autómata Push-Down determinístico. Analizador sintáctico Top-Down y Bottom-up

Bolilla 5. Propiedades de los lenguajes libres de contexto. Formas Normales.

Bolilla 6. Máquina de Turing. Gramáticas Irrestrictas. Lenguajes Sensibles del Sontexto o Tipo 1. Autómata Linealmente Acotado. Gramáticas Sensibles del Contexto.

# XIII - Imprevistos

Eventualmente si por motivos de fuerza mayor, no se cuenta con la totalidad de las semanas de clase previstas, el profesor responsable determinará que temas serán propuestos para que los alumnos estudien por su cuenta.

# XIV - Otros