

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Bioquímica y Cs Biologicas Area: Ecologia

(Programa del año 2019) (Programa en trámite de aprobación) (Presentado el 08/04/2019 11:12:56)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
BIOTECNOLOGÍA VEGETAL	LIC. EN BIOTECNOLOGÍA	7/17- CD	2019	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
SOSA, LAURA RAQUEL	Prof. Responsable	P.Adj Exc	40 Hs
AGUIRRE, GERARDO ULISES	Prof. Colaborador	P.Adj Simp	10 Hs
KURINA SANZ, MARCELA BEATRIZ	Prof. Colaborador	P.Tit. Exc	40 Hs
STRASSER, BARBARA	Prof. Co-Responsable	P.Adj Exc	40 Hs
MAGALLANES NOGUERA, CYNTHIA AL	Auxiliar de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
1 Hs	3 Hs	Hs	3 Hs	7 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
05/08/2019	15/11/2019	15	105

IV - Fundamentación

El importante papel que desempeñan las plantas dentro de las sociedades como fuente de alimentos, medicamentos y otros recursos ha incentivado al hombre al manejo y mejoramiento vegetal de muchas especies que le resultan útiles. Comprender los aspectos básicos de la biotecnología aplicada a los vegetales, sus herramientas y aplicaciones es de gran importancia para desarrollar tareas de investigación básica y aplicaciones productivas.

V - Objetivos / Resultados de Aprendizaje

Comprender los principios moleculares, celulares y organísticos que explican los fenómenos fisiológicos de las plantas.

- 2. Comprender la integración funcional en el organismo de la planta y su importancia para la biotecnología.
- 3. Adquirir habilidad para formular problemas, diseñar experimentos, seleccionar y evaluar métodos, y discutir resultados relevantes al funcionamiento de las plantas.
- 4. Aprender a analizar y evaluar la literatura primaria de la Fisiología Vegetal.
- 5. Aprender cómo comunicar resultados científicos oralmente y por escrito.

Se persigue que los estudiantes comprendan los mecanismos que regulan los procesos implicados en el crecimiento y diferenciación de las plantas vasculares.

6. Comprender la estructura y función del material genético de los vegetales y su integración funcional.

7. Conocer los fundamentos y bases moleculares de las diferentes técnicas para la transformación y obtención de organismos vegetales genéticamente modificados.

VI - Contenidos

UNIDAD 1

Introducción a la Biología Vegetal. Ubicación sistemática de las Embriófitas en la clasificación actual. La organización morfológica de los principales grupos de Traqueófitas.

Citología. Características típicas de la célula eucariota vegetal: Vacuolas, Plástidos y Pared celular (origen, función, composición química y ultraestructura). Pared primaria y secundaria. Sustancias incrustantes y adcrustantes. Conexiones intercelulares. Plasmodesmos. Puntuaciones: simple, ciega, areolada y par de puntuaciones. Perforaciones. Placa perforada y placa cribosa.

UNIDAD 2

Histología. Sistemas de tejidos. Meristemas concepto y clasificación. Meristemoides. Meristemas laterales: cambium y felógeno. Meristemas intercalares. Organización apical caulinar y radical del cuerpo de la planta.

Tejidos de protección. Epidermis, tipos celulares. Estomas y tricomas. Pelos absorbentes.

Tejido Fundamental. Parénquima, características y funciones. Tipos de parénquima. Colénquima, caracterización y clasificación. Esclerénquima, tipos celulares, características.

Tejido Conductor. Xilema y Floema primario y secundario. Tipos celulares que conforman el tejido conductor.

UNIDAD 3

Organografía. Raíz. Exomorfología. Clasificación y tipos. Anatomía, estructura primaria. Modificaciones de raíces. Tallo. Exomorfología. Anatomía. Tipos de hacecillos de conducción. Estela. Estructura primaria. Tallos modificados. Hoja. Exomorfología. Filoma. Filotaxis. Anatomía. Tipos de estructura del mesofilo: dorsiventral, unífacial, kranz y CAM. Relación de la anatomía y el mecanismo fotosintético. Caracteres adaptativos de la hoja. Flor. Características morfológicas y anatómicas de los verticilos florales. Perianto. Perigonio. Sexualidad. Ovario. Óvulos. Saco embrionario. Androceo. Estambre. Antera y grano de polen y tubo polínico. Micro y megaesporogénesis y micro y megagametogénesis. Polinización y fecundación. Fruto, criterios de clasificación. Partenocarpia. Apomixis. Semilla, tejido nutricio.

UNIDAD 4:

Ciclo ontogénico. Períodos vegetativo y reproductivo. Edad cronológica y edad fisiológica. Reposos. Germinación. Concepto. Regulación de la germinación. Metabolismo de la germinación. Viabilidad y longevidad de las semillas. Características generales del crecimiento. Cuantificación del crecimiento. Reguladores del crecimiento. Fitohormonas. Clasificación. Centros de biosíntesis. Transporte. Procesos en los cuales actúan. Modo de acción.

UNIDAD 5:

Diferenciación. Mecanismo de la diferenciación. Polaridad. Morfogénesis. Clases de control. Fotomorfogénesis. Fitocromos: propiedades físicas y químicas. Mecanismo de las fotoconversiones. Mecanismo de acción. Fotorrespuestas reguladas por fitocromos. Fotoperiodismo y vernalización.

Metabolismo energético. Fotosíntesis. Difusión del dióxido de carbono. Fijación y asimilación del dióxido de carbono. Diferentes vías de fijación. Características de las plantas según su mecanismo de fijación.

UNIDAD 6:

El suelo y la planta. El agua del suelo. Potencial agua. Incorporación del agua en la planta. Trayectoria del agua por la raíz. El suelo como sustrato nutritivo. Nutrientes minerales. Elementos esenciales: funciones; efectos y síntomas por deficiencia. Mecanismos de incorporación de iones. Vías de transporte. Cultivo en soluciones nutritivas balanceadas (hidroponia).

UNIDAD 7:

Herramientas y aplicaciones de cultivos in vitro de vegetales

Cultivo in-vitro de células y tejidos vegetales. Iniciación de cultivos vegetales in-vitro. Fitorreguladores en la iniciación y mantenimiento de cultivos in vitro. Indiferenciación y diferenciación celular. Organogénesis. Embriogénesis. Micropropagación.

Cultivos sumergidos. Manejo y aplicaciones de cultivos celulares. Cultivo de órganos y raíces transformadas genéticamente. Metodologías y aplicaciones biotecnológicas.

UNIDAD 8:

Metabolismo secundario y xenobiótico. Aplicaciones biotecnológicas.

El metabolismo secundario y su rol. Producción de metabolitos vegetales in-vitro. Estrategias para inducir la biosíntesis y acumulación de metabolitos: Elicitación. Uso de cultivos diferenciados e indiferenciados. Permeabilización. Inmovilización de células vegetales. Metodologías para la recuperación de metabolitos. Biotransformaciones. Biorreactores y métodos de operación. Aplicaciones.

UNIDAD 9:

Herramientas moleculares en biotecnología vegetal.

El genoma nuclear vegetal, su organización y regulación. Generalidades y particularidades respecto de otros genomas eucariotas. El genoma del cloroplasto. Estudio del genoma vegetal. Hibridación in situ fluorescente (FISH); variantes y aplicaciones. Genómica. Análisis de variabilidad. Herramientas para análisis de la variabilidad genética en cultivos y especies forestales. Herramientas para el análisis epigenético. Mejoramiento vegetal. Métodos asistidos por marcadores moleculares. Mutagénesis y selección.

UNIDAD 10:

Obtención, uso y análisis de plantas modificadas por ingeniería genética.

Ingeniería genética de plantas. Obtención de plantas transgénicas: mediada por Agrobacterium, biobalística, electroporación y microinyección. Modificación del genoma nuclear vs genoma del cloroplasto. Ventajas comparativas. Diferentes tipos de plantas transgénicas: resistentes a patógenos (virus, bacterias, hongos, insectos), resistentes a estrés abiótico. Mejora de la calidad de alimentos mediante transgénesis. Métodos de detección de plantas transgénicas en cadena agroalimentaria. Bioensayos. Detección de proteínas. Detección de secuencias transgénicas. Consideraciones prácticas: falsos positivos, falsos negativos, límite de detección y límite de cuantificación. Generalidades sobre protocolos de liberación de eventos; evaluación de riesgos.

VII - Plan de Trabajos Prácticos

Practico Nº1: Organización del cuerpo de la planta, Microscopia-

Práctico N°2: Meristemas. Sistema dérmico, Sistema Fundamental, Sistema Vascular

Practico N°3: Raíz-Tallo

Práctico Nº4: Hoja Exomorfología. Adaptaciones. Anatomía de Hoja.

Práctico Nº 5: Flor Exomorfología y anatomía.

Práctico Nº6: Fruto, Semilla y Plántula. Guía de estudio. Cierre de la Unidad.

Práctico Nº 7: Pruebas de viabilidad y pruebas de vigor.

Práctico Nº 8: Cuantificación del crecimiento

Práctico Nº 9: Reproducción asexual.

Práctico Nº 10: Fotomorfogénesis

Práctico N°11: Iniciación y mantenimiento de cultivos indiferenciados en medio sólido y de suspensiones celulares.

Práctico N°12: Iniciación y mantenimiento de cultivos de raíces transformadas.

Práctico Nº 13: Inmovilización de células vegetales indiferenciadas

Práctico N°14: Biotransformación con células vegetales

Práctico N°15: Extracción A.D.N de especies vegetales de interés agroindustrial: harina de semillas de Glycine max.

Practico Nº 16: Uso de marcadores moleculares para estimar variabilidad genética.

VIII - Regimen de Aprobación

Los alumnos para poder cursar Biotecnología Vegetal deberán tener aprobada Química de Biomoléculas y regularizada Biología Molecular e Ingeniería Genética. Para rendir o promocionar deberán tener aprobada Biología Molecular e Ingeniería Genética.

A-Condiciones que deben cumplir los Alumnos Promocionales:

1-Tener aprobadas: Biología Molecular e Ingeniería Genética

2-Asistencia: Los alumnos deberán tener un 80 % de asistencia a las clases teóricas y Trabajos Prácticos.

3- Trabajos Prácticos: Los alumnos deberán tener un 80% de los Trabajos Prácticos aprobados

(Asistencia-Informe-Evaluación).

- 4- Exámenes Parciales: Los alumnos se evaluarán a través de cuatro (4) exámenes parciales, con temas de teoría y práctica. Aprobarán aquellos que tengan como mínimo un 70% de respuestas correctas
- 5- Recuperaciones: Se podrán recuperar dos (2) parciales por única vez, siempre y cuando posean los otros dos aprobados con una nota igual o superior a 7 (siete).
- B-Condiciones que deben cumplir los Alumnos Regulares:
- 1-Asistencia: Los alumnos deberán tener un 80% de asistencia a los Trabajos Prácticos.
- 2- Trabajos Prácticos: Los alumnos deberán tener un 80% de los Trabajos Prácticos aprobados (Asistencia-Informe-Evaluación).
- 3- Exámenes Parciales: Los alumnos se evaluarán a través de cuatro (4) exámenes parciales, con temas de teoría y práctica. Aprobarán aquellos que tengan como mínimo un 60% de respuestas correctas.
- 4- Recuperaciones: Cada parcial tendrá dos recuperaciones, una a la semana siguiente de la evaluación y la segunda al final de la cursada. El Examen Final será escrito y se aprobará con un 60 % de respuestas correctas Resol. 04/15.
- C-Condiciones que deben cumplir los Alumnos Libres:
- El examen para el alumno libre comenzará el día y hora fijada para el examen de la asignatura y consistirá en:
- 1) Examen práctico: Realización y aprobación de 1 trabajo práctico, el cual debe ser aprobado con un puntaje mínimo de 70%. Dicho examen Práctico es eliminatorio.
- 2) Examen teórico: Se evaluará en forma escrita con temas del programa actual, siempre y cuando haya aprobado la instancia práctica.
- El examen final será evaluado en forma escrita u oral.

IX - Bibliografía Básica

- [1] Azcon-Bieto J., Talon M. 2008. "Fundamentos de Fisiología Vegetal". Ed. Mc Graw Hill –Interamericana
- [2] [2] -Barceló Coll J., Rodrigo G.N., Sabater García B., Sánchez Tamés R. 2005. "Fisiología Vegetal". 6ta edición. Ediciones Pirámide.
- [3] [3] -Biotecnología y mejoramiento vegetal. Editores V. Echenique, C. Rubinstein y L. Mroginski. Ediciones INTA 2004.
- [4] [4] -Buchanan B.B., Gruissem W., Jones R.L. 2000 "Biochemistry and Molecular Biology of Plants". American Society of Plant Physiologists. 15501 Monona Drive. Rockville, Maryland 20855-2768 USA.
- [5] [5] -Buchanan, B. B., Gruissem, W., y Jones, R. L. (Eds.). (2015). Biochemistry and molecular biology of plants. John Wiley & Sons.
- [6] [6] Esau, K. (1985) Anatomía de las Plantas con semilla. Bs. As. Editorial Hemisferio Sur.
- [7] [7] -Evert, R. F. E., Evert, S. E. R. F., y Eichhorn, S. E. (2013). Raven: biology of plants. W. H. Freeman and Company.
- [8] [8] -Cocucci A y TA Hunziker. 1976. Los ciclos biológicos del Reino Vegetal. Córdoba. Ac. Nac. de Ciencias. 102pp
- [9] [9] -Cortes, F.1986. Cuadernos de Histología Vegetal. Ed. Marban. Madrid, España. 190pp.
- [10] [10] -Dimitri, MJ y EN Orfila. 1985. Tratado de Morfología y Sistemática Vegetal. Ed. Acme. Bs. As. 489pp.] -Fahn, A. 1985. Anatomía Vegetal. Ediciones Pirámide S.A.
- [11] [11] -Font Quer, P. 1953. Diccionario de Botánica. Ed. Labor. Barcelona. España. 1244 pp.
- [12] [12] -Jones, R. O., Thomas, H., Waalard, H., y Jones, S. R. (2013). The molecular life of plants. John Wiley & Sons.
- [13] [13] -Plant Cell Culture. R. Dixon and R. Gonzales. 2ª De. IRL Press. 1994.
- [14] [14] -Plant Biotechnology. M. Flower and G. Warver. De. Pergamon Press. 1991.
- [15] [15] -Plant an Tissue culture in Liquid Systems. G Payne, N. Bringi, C. Prince and M. Schule. Editorial Hanson Publishers, 1991.
- [16] [16] -Plant Tissue as Source of Biochemicals D. Dougall. Editorial CRC Press, Boca Raton 1980.
- [17] [17] -Izco J., E. Barreno y otros. 1997. Botánica. Ed. Interamericana. 781pp.

- [18] [18] -Raven P.H., Evert R.F., Eichhorn S.E. 1992. Biología de las plantas. Tomo II. Editorial Reverté, S.A. Barcelona, España.
- [19] [19] -Salisbury F.B., Ross C.W. "Fisiología Vegetal". 2000. Grupo Editorial Iberoamérica.
- [20] [20] -Scagel R y otros. 1983. El Reino Vegetal. Barcelona Omega.
- [21] [21] -Serrano García, M., y Piñol Serra M.T. (1991) Biotecnología vegetal. España. Editorial Sintesis S.A.
- [22] [22] -Strasburger E y otros. 1974. Tratado de Botánica. 6ºEdición Marin. Barcelona. 799 pp.
- [23] [23] -Taiz Lincon, Zeiger Eduardo 2006. "Fisiología Vegetal". Colección "Ciencias experimentals" Castello de la Palma. Publicaciones de la Universidad Jaume I, D.L. España.

X - Bibliografia Complementaria

- [1] Páginas usadas en Docencia
- [2] [2] http://www.biologia.edu.ar/botanica/
- [3] [3] http://biologiavegetaljmv-hilda.blogspot.com/2011/03/plantas-terrestres-primitivas-y-lineas.html
- [4] [4] http://www.biologia.edu.ar/botanica/tema3/tema3_3xerofita.htm
- [5] [5] http://www.dipbot.unict.it/tavole_es/index.html
- [6] [6] http://webs.uvigo.es/mmegias/inicio.html
- [7] [7] http://iescarin.educa.aragon.es/estatica/depart/biogeo/varios/BiologiaCurtis/

XI - Resumen de Objetivos

Comprender los principios moleculares, celulares y organísticos que explican los fenómenos fisiológicos de las plantas.

- 2. Comprender la integración funcional en el organismo de la planta y su importancia para la biotecnología.
- 3. Adquirir habilidad para formular problemas, diseñar experimentos, seleccionar y evaluar métodos, y discutir resultados relevantes al funcionamiento de las plantas.
- 4. Aprender a analizar y evaluar la literatura primaria de la Fisiología Vegetal.
- 5. Aprender cómo comunicar resultados científicos oralmente y por escrito.

Se persigue que los estudiantes comprendan los mecanismos que regulan los procesos implicados en el crecimiento y diferenciación de las plantas vasculares.

- 6. Comprender la estructura y función del material genético de los vegetales y su integración funcional.
- 7. Conocer los fundamentos y bases moleculares de las diferentes técnicas para la transformación y obtención de organismos vegetales genéticamente modificados

XII - Resumen del Programa

ntroducción a la Biología Vegetal.

Histología. Sistemas de tejidos.

Organografía.

Ciclo ontogénico.

Diferenciación.

Herramientas y aplicaciones de cultivos in vitro de vegetales

Metabolismo secundario y xenobiótico. Aplicaciones biotecnológicas.

Herramientas moleculares en biotecnología vegetal.

Obtención, uso y análisis de plantas modificadas por ingeniería genética.

XIII - Imprevistos

XIV - Otros

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		