

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas

(Programa del año 2017)

Area: Matematicas

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
ECUACIONES DIFERENCIALES II	LIC.MAT.APLIC.	12/14	2017	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
SPEDALETTI, JUAN FRANCISCO	Prof. Responsable	P.Adj Exc	40 Hs
ALCALA, LUIS ADRIAN	Prof. Colaborador	P.Adj Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
10 Hs	Hs	Hs	Hs	10 Hs

Tipificación	Periodo	
C - Teoria con prácticas de aula	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
07/08/2017	17/11/2017	15	150

IV - Fundamentación

Ecuaciones Diferenciales en Derivadas Parciales es una herramienta básica en muchas aplicaciones de la matemática en otras ciencias e ingeniería, también es un campo de la matemática de los mas fértiles y ricos. Es difícil en una introducción a tan diversa y compleja temática la elección de temas. Muchos de los libros existentes, por ejemplo, proporcionan material para varios semestres de cursos. He preferido una breve introducción a la problemática de las EDP con variados problemas que aparecen esencialmente en la física.

V - Objetivos / Resultados de Aprendizaje

- 1. Introducción a los problemas básicos de ecuaciones en derivadas parciales: de contorno y de valores iniciales.
- 2. Introducción de las tres ecuaciones básicas: Dirichlet, de ondas y del calor. Otros problemas en física.
- 3. Introducción a los espacios de Sobolev.

VI - Contenidos

Capítulo I: ecuaciones en derivadas parciales

Los operadores usuales mas importantes: operador potencial, de difusión y de ondas. Clasificación de ecuaciones: características (dim = 2). Los tres tipos usuales de problemas de contorno, de valores iniciales, de autovalores. Las tres condiciones de contorno usuales: Dirichlet, Neumann y Robin. Las cuestiones fundamentales: existencia, unicidad, estabilidad y regularidad. Problemas "bien puestos". Ejemplos.

Capítulo II: separación de variables

El método de separación de variables como herramienta para resolver las ecuaciones clásicas: Laplace, ondas calor. Introducción a lasseriesde Fourier

Capítulo III: problemas de Dirichlet y Neumann

La ecuación de Laplace. Propiedades de funciones armónicas: teoremas de valor medio, principio del máximo, acotación de las derivadas, analiticidad y desigualdad de Harnack. Identidades de Green y unicidad. Teoría de potencial y funciones de Green. Núcleo de Poisson. El problema de Dirichlet en una esfera y en el semiespacio positivo. Método de Perron para existencia de soluciones.

Capítulo IV: la ecuación del calor

La ecuación del calor en un dominio acotado. El principio del máximo y unicidad. Introducción a transformadas de Fourier. Solución fundamental. Métodos de energía. Regularidad.

Capítulo V: la ecuación de ondas

La ecuación de ondas en R. La fórmula de D'alembert. La ecuación de ondas en R^3. La fórmula de Kirchkoff. La ecuación de ondas en R^2. La fórmula de Poisson. La ecuación de ondas no homogénea. La ecuación de ondas en regiones acotadas.

Capítulo VI: espacios de Sobolev

Definiciones y propiedades elementales. Soluciones débiles. Ecuaciones elípticas simétricas. Problemas no simétricos.

VII - Plan de Trabajos Prácticos

Prácticas elaboradas con ejercicios elegidos de la bibliografía básica. Disponibles en la página web de la materia.

VIII - Regimen de Aprobación

- . Se propone un sistema de regularidad:
- El alumno deberá exponer dos temas, asignado por el responsable durante el curso y presentar la resolución de los ejercicios de cada práctica. Tanto las exposiciones como la presentación de las prácticas serán evaluadas.
- El alumno que apruebe todas las actividades con al menos 60 % y haya asistido al 80 % de las clases teórico-prácticas dictadas regularizara la materia.
- El alumno regular podrá aprobar la materia rindiendo un examen teórico en los turnos de examen previstos por la Universidad.
- El alumno que obtenga menos del 60 % en todas las actividades quedará libre.
- Alumnos libres: la aprobación de la materia se obtendrá rindiendo un examen práctico en caso de aprobar éste, deberá rendir en ese mismo turno de examen, un examen teórico. Solo se podrá acceder a la instancia del examen teórico si fue aprobado el examen práctico.

IX - Bibliografía Básica

[1] • Apunte sobre Ecuaciones Diferenciales Parciales. Julián Fernández Bonder

X - Bibliografia Complementaria

- [1] [1] E. DiBenedetto. Partial Differential Equations. Birkhäuser, Boston, 1995.
- [2] [2] L.C. Evans. Partial Differential Equations. Graduate Studies in Mathematics, vol 19. American Mathematical Society, 1991.
- [3] [3] R. McOwen. Partial Differential Equations. Prentice-Hall International (London), 1995.
- [4] [4] Sandro Salsa. Partial Differential Equations in Action From Modeling to Theory. Springer, 2008.
- [5] [5] D. Gilbarg, N. Trudinger. Elliptic Partial Differential Equations of Second Order. Springer, 1998.

XI - Resumen de Objetivos

- 1. Introducción de los problemas básicos de ecuaciones en derivadas parciales: de contorno y de valores iniciales.
- 2. Introducción de las tres ecuaciones básicas: Dirichlet, de ondas y del calor. Otros problemas de física.
- 3. Introducción a los espacios de Sobolev.

XII - Resumen del Programa Capítulo I: ecuaciones en derivadas parciales Capítulo II: separación de variables Capítulo III: problemas de Dirichlet y de Neumann Capítulo IV: la ecuación del calor Capítulo V: la ecuación de ondas Capítulo VI: espacios de Sobolev XIII - Imprevistos