

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ciencias Básicas

(Programa del año 2017) (Programa en trámite de aprobación) (Presentado el 14/08/2017 18:38:46)

Area: Química

I - Oferta Académica

Materia	Carrera	Plan Año	Período
		Ord.C	
Química General e Inorgánica B	ING.EN ALIMENTOS	.D.02 2017	2° cuatrimestre
		3/12	

II - Equipo Docente

Docente	Función	Cargo	Dedicación
COMELLI, NORA ALEJANDRA	Prof. Responsable	P.Tit. Exc	40 Hs
ROSSI, RICARDO ENRIQUE	Responsable de Práctico	JTP Exc	40 Hs
MORA, DARIO MIGUEL ARNALDO	Auxiliar de Práctico	A.1ra Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
7 Hs	Hs	Hs	Hs	7 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
14/08/2017	17/11/2017	15	105

IV - Fundamentación

En el curso Química Inorgánica se estudia: equilibrio iónico, electroquímica, enlaces, sólidos, reacciones nucleares. Además se realiza un estudio de los diferentes grupos de la tabla periódica poniendo énfasis en métodos de obtención, principales compuestos y aplicación.

Química de la Atmosfera, el estado sólido y algunas nociones de reacciones nucleares. Los temas se desarrollan en clases teóricas, se realizan problemas y trabajos prácticos de laboratorio, relacionados con los conceptos adquiridos

V - Objetivos / Resultados de Aprendizaje

Proporcionar a los alumnos conocimientos de química inorgánica para que puedan:

- Distinguir los grupos de la tabla periódica con su diferentes propiedades
- Interpretar los fenómenos fisicoquímico que acompañan toda transformación química.
- Brindar las herramientas necesarias para que puedan ser aplicados en las asignaturas posteriores de la carrera.

VI - Contenidos

Tema 1.

Estructura atómica. Ondas luminosas. Relación entre frecuencia y energía. Partículas atómicas. Átomo de Rutherford.

Teoría de átomo de Bohr. Espectros atómicos. Teoría moderna de átomo de hidrogeno. Principio de incertidumbre. Mecánica cuántica. Orbitales atómicos. Números cuánticos. Descripción de los orbitales de hidrogeno. Átomos poli electrónicos.

Tema 2

Tabla periódica. Relación entre estructura atómica y tabla periódica. Variación de las propiedades a lo largo de la tabla periódica. Potencial de ionización, afinidad electrónica, tamaño atómico e iónico.

Tema 3

Enlaces. Uniones químicas. Enlace iónico. Enlace covalente. Escritura de las estructuras de Lewis. El concepto de resonancia. Excepciones a la regla del octeto. Moléculas polares.

Teoría del enlace de valencia. Geometría molecular, hibridación de orbitales atómicos. Hibridación en moléculas que contienen doble y triple enlaces

Orbitales moleculares Teoría del orbital molecular. Configuraciones de orbitales moleculares

Tema 4

Electroquímica. Ecuaciones de óxido reducción. Notaciones iónicas en las ecuaciones. Ecuación iónica neta. Pilas su notación. Potencial estándar de las pilas y hemipilas. Potencial de la pila y concentración ecuación de Nernst. Electrodos de referencia. Electrólisis leyes de Faraday. Corrosión.

Tema 5

QUIMICA DE LOS ELEMENTOS REPRESENTATIVOS

Elementos del bloque s y p. Configuraciones electrónicas de valencia, estados de oxidación y casos de covalencia. Propiedades periódicas generales. Estado natural y métodos de obtención. Principales reacciones. Química en solución. Nutrimentos inorgánicos.

Tema 6.

QUIMICA DE LOS ELEMENTOS DE TRANSICION

Definición. Propiedades generales. Clasificación. Primera Serie de Transición: estabilidad de los estados de oxidación. Química redox y ácido-base. Principales reacciones.

Segunda y Tercera Serie de Transición: estabilidad de los estados de oxidación. Principales reacciones.

Elementos de Post-transición. Lantánidos y Actínidos.

Usos y aplicaciones de los elementos de transición en la industria alimentaria

Tema 7.

QUIMICA DE LOS COMPUESTOS DE COORDINACION

Generalidades. Nomenclatura de los compuestos de coordinación. Isomería de posición. Teorías de enlace en complejos: Teoría del Campo Cristalino (TCC), Teoría del Campo Ligando (TCL), Teoría del Orbital Molecular (TOM). Espectros electrónicos. Propiedades magnéticas. Criterios de estabilidad. Quelatos. Compuestos de Coordinación de interés biológico y biotecnológico.

Tema 8.

QUÍMICA DE LA ATMÓSFERA

La atmósfera terrestre. Disminución del ozono en la estratosfera, agujeros en la capa de ozono. El efecto invernadero. La lluvia ácida. El smog fotoquímico. Contaminación doméstica.

Tema 9.

EL ESTADO SÓLIDO.

Fuerzas intermoleculares: fuerzas dipolo-dipolo, fuerzas Ion-dipolo, fuerzas de dispersión, el enlace de hidrógeno. Estructura cristalina: empaquetamiento de esferas, empaquetamiento compacto. Tipo de cristales: cristales iónicos, cristales covalentes, cristales moleculares y cristales metálicos. Sólidos amorfos.

Tema 10.

REACCIONES NUCLEARES

La naturaleza de las reacciones nucleares. Radiactividad nuclear. Fisión nuclear. Fusión nuclear. Aplicaciones de los isótopos. Efectos biológicos de la radiación.

VII - Plan de Trabajos Prácticos

A.- Trabajos Prácticos de Aula

Se resolverán problemas relacionados con los temas desarrollados en las Clases teóricas

- B.- Temas a desarrollar en los prácticos de Laboratorio
- 1-Valoración ácido base
- 2-Reacciones de oxidación y reducción
- 3-Halógenos: obtención de cloro
- 4-Halógenos: obtención de yodo
- 5-Obtención de ácido clorhídrico
- 6-Hierro-cobalto-níquel
- 7-Aluminio-estaño-plomo
- 8-Obtención de amoníaco

VIII - Regimen de Aprobación

REGIMEN DE ALUMNOS REGULARES

El dictado de la asignatura será del tipo teórico practico:

- I.- Prácticos de aula
- a) Se exige asistencia a un 80 % de los prácticos de aula
- b) Al finalizar cada clase de problemas el jefe de trabajos prácticos firmara el cuaderno donde se realizaron los trabajos.
- c) Se considerara ausente el alumno que incurra en una tardanza superior a los 10 minutos.
- d) El alumno deberá llevar al día un cuaderno o carpeta, con los problemas resueltos en clase.
- e) Los alumnos deberán proveerse del material necesario para las clases de problemas (papel milimetrado, sistema de cálculos, etc.). La cátedra los proveerá de la bibliografía, tablas, etc. que estén dentro de sus posibilidades.
- II.- Prácticos de laboratorio: ejecución de los trabajos prácticos
- a) Se requiere una asistencia del 100 % a las clases de laboratorio.
- b) Los trabajos de laboratorio se podrán recuperar, existiendo para ello una clase recuperadora antes de finalizar el cuatrimestre. Solo puede recuperar un 35% de los trabajos prácticos
- c) Finalizado el trabajo de laboratorio el alumno deberá mostrar al docente encargado, el informe de los resultados obtenidos.
- d) El informe debe ser individual

III.- Parciales

Se tomaran dos parciales que incluirán problemas y preguntas sobre los trabajos prácticos de laboratorio realizados, con su correspondiente recuperación dentro de los 5 y 12 días, de acuerdo a la Ord. Nº 13/03. De acuerdo a la normativa actualmente vigente (Ord. CS 32/14), se tomaran al final del cuatrimestre un recuperatorio más de cada parcial para el alumno que así lo necesite.

Fechas estimadas para las evaluaciones: 1er Parcial: 28/09// Recuperatorio: 05/10 2do Parcial: 02/11// Recuperatorio: 09/11

REGIMEN DE ALUMNOS LIBRES

- El examen libre constara de dos partes.

- a) evaluación sobre prácticos.
- b) evaluación sobre teoría.

Deberá aprobar un examen escrito, el que constara de problemas del tipo de los desarrollados en clase, debiendo resolver el 70 % de los mismos. Si aprueba la examinación de problemas deberá proceder a la realización de un trabajo práctico de laboratorio, el que se elegirá mediante sorteo, dentro de los trabajos prácticos que se realizaron durante el año. Una vez realizado el trabajo práctico deberá elevar el informe al tribunal de la mesa examinadora para que analice los resultados obtenidos, de ser estos satisfactorios, pasara a la evaluación sobre teoría. Sobre los temas desarrollados en teoría se lo evaluará de la misma forma que se hizo para un alumno regular.

IX - Bibliografía Básica

- [1] BIBLIOGRAFIA
- [2] 1. RAYMOND CHANG, Química, Mc Graw Hill, 9na edición, 2007 Mexico.
- [3] 2. P. W. ATKINS, Química General. Ediciones Omega, S.A. 1992.
- [4] 3. MASTERTON-SLOWINSKY, Química General Superior. Ed. Interamericana. España 1977.
- [5] 4. P. ATKINS, L. JONES, Química, molécula, materia, cambio. Ed. Omega. Barcelona. 3 ra edición. 1998.
- [6] 5. BEBBING, General Chemistry, Houghton Mifflin Company Boston, 1984
- [7] 6. Whitten, Química General 5ta. Edición 1999. Mc Graw Hill
- [8] 7. Atkins Loretta. Química. Molécula, Materia y Cambio. 3ra. Edición 1998. Omega
- [9] 8. Apuntes de la cátedra.

X - Bibliografia Complementaria

- [1] 1. SLABAUGH Y PARSONS, Química General. Ed. Limusa. México 1978.
- [2] 2. BECKER Y WENTWORTH, Química General. Ed. Reverte, España 1977
- [3] 3. BRUCE MAHAN, Química. Curso Universitario. Fondo educativo Interame-
- [4] ricano 1968.
- [5] 4. GLASSTONE Y LEWIS, Elementos de química física, 2da edición. Ed.
- [6] Medico quirúrgico, Buenos Aires 1962.
- [7] 5. BRADY HUMISTON, General Chemistry, Principles and structure, 2ed.
- [8] Jhon Wiley, 1980.

XI - Resumen de Objetivos

Proporcionar a los alumnos conocimientos de química inorgánica para que puedan:

- Distinguir los grupos de la tabla periódica con su diferentes propiedades
- Interpretar los fenómenos fisicoquímico que acompañan toda transformación química.
- Brindar las herramientas necesarias para que puedan ser aplicados en las asignaturas posteriores de la carrera

XII - Resumen del Programa

La asignatura está estructurada en los siguientes temas básicos:

Estructura atómica

Tabla Periódica

Enlaces Hibridación de orbitales atómicos, orbitales moleculares.

Electroquímica.

El estado sólido

La química de los metales

Elementos no metálicos y sus compuestos.

La química de los metales de transición y los compuestos de coordinación

Química de la atmósfera

Química nuclear

XIII - Imprevistos

XIV	- Otros	
2 3.1 V	- ()(1)()()	

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		