

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ciencias Agropecuarias Area: Producción y Sanidad Vegetal

(Programa del año 2015)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
		11/04		
Mejoramiento Genético Vegetal	Ingeniería Agronómica	-25/1	2015	2° cuatrimestre
		2		

II - Equipo Docente

Docente	Función	Cargo	Dedicación
BOLOGNA, SUSANA BEATRIZ	Prof. Responsable	P.Adj Exc	40 Hs
LUCERO, VIRGINIA SOLEDAD	Auxiliar de Práctico	A.2da Simp	10 Hs
ROJAS, ELIZABETH	Auxiliar de Práctico	A.1ra Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. T		Total	
3 Hs	Hs	1 Hs	2 Hs	6 Hs

Tipificación	Periodo
E - Teoria con prácticas de aula, laboratorio y campo	2° Cuatrimestre

Duración				
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas	
10/08/2015	21/11/2015	14	84	

IV - Fundamentación

El Plan de Estudios vigente se plantea lograr un enfoque multidisciplinario a través de una integración progresiva de conocimientos, habilidades y destrezas, tendiente a la formación de un profesional con sólidos conocimientos básicos y capacidad para resolver problemas técnicos con responsabilidad social. En este contexto se incluye, en el tercer año de la carrera, la asignatura Mejoramiento Genético Vegetal, de carácter integrador, conceptual y metodológico, propio de la formación específica del Ingeniero Agrónomo.

El Mejoramiento Genético Vegetal se presenta como una herramienta para satisfacer la creciente demanda mundial de alimentos y contribuir a mejorar el grado de sustentabilidad de los sistemas agropecuarios, mediante el desarrollo de agrotipos superiores adaptados a nuevos requerimientos ambientales.

V - Objetivos / Resultados de Aprendizaje

Objetivo General:

El Mejoramiento Genético Vegetal tiene como objetivo final la obtención de genotipos superiores tendientes a satisfacer las crecientes necesidades del hombre, en el marco de un sistema de producción sustentable.

Objetivos Específicos:

- . Comprender la importancia de las fuentes de variabilidad genética como recursos estratégicos.
- . Valorar y analizar las actividades inherentes al manejo de los recursos genéticos.
- . Analizar los procesos naturales de la evolución y su aplicación en forma artificial para la obtención de cultivares.
- . Desarrollar habilidades y destrezas en el manejo de las poblaciones y en la obtención de cultivares.
- . Analizar las distintas poblaciones a través del estudio de la caracterización biométrica de los caracteres cuantitativos y cualitativos para aplicar los distintos métodos de selección.
- . Conocer los tipos de cultivares que se utilizan en la práctica agrícola.
- . Interpretar la integración del mejoramiento genético convencional con las nuevas técnicas de la biotecnología.
- . Conocer el marco legal e institucional de la obtención de cultivares.

VI - Contenidos

PROGRAMA ANALÍTICO

TEMA 1: INTRODUCCIÓN AL MEJORAMIENTO GENÉTICO VEGETAL

Objetivo: Conocer los conceptos básicos, los objetivos y las metodologías de la obtención de variedades mejoradas.

- 1.1. Mejoramiento Genético Vegetal: origen y evolución de la ciencia.
- 1.2. Impacto social de la mejora vegetal.
- 1.3. La evolución biológica y el Mejoramiento Genético Vegetal. La sostenibilidad del sistema productivo y la mejora vegetal.
- 1.4. Definiciones y objetivos del Mejoramiento Genético Vegetal.
- 1.5. Disciplinas científicas que contribuyen al Mejoramiento Genético.
- 1.6. Rol del mejorador de plantas. Características mejoradas por la crianza de plantas. Planificación de un programa de mejora.

TEMA 2: REPRODUCCIÓN VEGETAL

Objetivo: Analizar los sistemas reproductivos en las diferentes especies y su incidencia en las poblaciones genéticas.

- 2.1. Reproducción sexual: microesporogénesis y megaesporogénesis en relación a la formación de la semilla. Importancia en el mejoramiento genético.
- 2.2. Variabilidad genética. Hibridación natural y artificial.
- 2.3. Autogamia y alogamia. Causas que las condicionan. Determinación del porcentaje de fecundación cruzada.
- 2.4. Técnicas de autofecundación y de hibridación.
- 2.5. Estudio del polen. Recolección y conservación. Determinación de viabilidad y del poder germinativo.
- 2.6. Reproducción asexual. Importancia. Ventajas y desventajas.
- 2.7. Clonación. Apomixis. Clasificación e importancia.

TEMA 3: RECURSOS GENÉTICOS VEGETALES

Objetivo: Conocer la variabilidad genética existente y analizar su importancia como materia prima para el Mejoramiento Genético.

- 3.1. La variabilidad genética. La biodiversidad: importancia como recurso estratégico. Erosión genética.
- 3.2. Evolución de la variabilidad: domesticación de las especies, agricultura, Revolución Verde, Revolución Biotecnológica.
- 3.3. Causas de variación en las poblaciones. Niveles en el individuo que expresan variación.
- 3.4. Distribución de la variabilidad: origen y dispersión de las plantas cultivadas. Centros de origen. Centros de diversidad. Microcentros. Megacentros de diversidad.
- 3.5. Recursos genéticos vegetales: definición, características y clasificación. Manejo de los recursos genéticos: colección, conservación, caracterización y evaluación.
- 3.6. Conservación de los recursos genéticos. Técnicas de conservación in situ y ex situ. Colecciones. Bancos de germoplasma: características, clasificación y manejo.

Red de Bancos y Colecciones de germoplasma de INTA.

- 3.7. Evaluación de las colecciones. Descriptores.
- 3.8. Control de los recursos genéticos. Intercambio de germoplasma. Organismos de regulación. Legislación nacional y acuerdos internacionales.
- 3.9. Programa de recursos genéticos: características y funcionamiento

TEMA 4: CONDUCCIÓN Y ANÁLISIS DE ENSAYOS DE CAMPO

Objetivos: Relacionar y aplicar los conocimientos básicos de Biometría y Diseño Experimental con el manejo del material experimental en las distintas etapas de la mejora vegetal.

- 4.1. Técnicas experimentales de campo. Registros. Fuentes de variación. Tratamientos. Repeticiones. Variación y Error experimental.
- 4.2. Ubicación de los ensayos. Clases de parcelas. Tamaño y forma de parcelas.
- 4.3. Diseños experimentales: su significado y aplicación en los procesos de selección y evaluación de genotipos.
- 4.4. Evaluación de un diseño experimental: Análisis estadísticos. Análisis de la varianza. Prueba de F. Valor p. Test de diferencia de límite significativa. Interpretación de resultados. Manejo y aplicación de software específico: InfoStat.
- 4.5. Ensayo comparativo de Rendimiento: Diseño, cálculo y preparación, confección de un registro y toma de observaciones.

TEMA 5: HERENCIA CUANTITATIVA

Objetivo: Comprender los principios metodológicos para el manejo de los caracteres cuantitativos y relacionarlos con las distintas etapas de la selección.

- 5.1. Antecedentes del estudio de la variación. Variación cualitativa y variación cuantitativa. Caracteres cuantitativos: aspectos que los identifican.
- 5.2. El fenotipo: modelo de expresión y sus componentes.
- 5.3. Acción génica. El modelo de aditividad y dominancia.
- 5.4. Variabilidad genética y ambiental. Estimación.
- 5.5. Componentes de la varianza genotípica y su estimación. Partición de la varianza genotípica. Estimación de la varianza genotípica en la F2 y en la retrocruzas.
- 5.6 Heredabilidad. Concepto, clasificación y estimación.
- 5.7. La correlación entre caracteres cuantitativos. Componentes del rendimiento. Distintas situaciones de asociación.

Coeficiente de correlación. Coeficiente de sendero. Manejo y aplicación de software específico: Info-Gen.

5.8. Diseños genéticos. Diseño biparental. Diseño de Carolina del Norte. Diseños dialélicos.

TEMA 6: LOS FACTORES QUE AFECTAN A LA SELECCIÓN

Objetivo: Interpretar las relaciones entre los parámetros de la selección, los genotipos y los ambientes de selección.

- 6.1. Selección: definición, efectos y aspectos generales.
- 6.2. Formación de la población de partida. Elección de los progenitores. Propiedades genéticas de la población base. Parámetros que la caracterizan.
- 6.3. Criterios de selección: tandem, descarte individual e índice. Selección por más de un carácter.
- 6.4. Respuesta a la selección. Diferencial de selección. Intensidad de selección.
- 6.5. Relación entre la respuesta y el diferencial de selección. Ecuación descriptiva del proceso de selección.
- 6.6. Heredabilidad realizada o liberada por el proceso de selección.
- 6.7. Selección y respuesta: distintas situaciones. Predicción de la respuesta a la selección. Avance genético absoluto y relativo esperado.
- 6.8. El ambiente. Interacción genotipo ambiente. Definición y complejidad biológica de la interacción. Formas de interacción genotipo ambiente. El caso de dos genotipos y dos ambientes. Detección de la existencia de interacción. Estimación de la magnitud de la interacción. Estabilidad de los rendimientos. Manejo y aplicación de software específico: Info-Gen.

TEMA 7: ENDOCRÍA Y HETEROSIS

Objetivo: Comprender las consecuencias genéticas de la endocría y del vigor híbrido.

- 7.1. Endocría: concepto, tipos de apareamientos consanguíneos. Consecuencias genéticas. Importancia y aplicación en la mejora genética.
- 7.2. Propósitos de la endocría. Coeficiente de endocría.
- 7.3. Heterosis: concepto y manifestación. Teorías de la heterosis.
- 7.4. Cuantificación de la heterosis. Aplicación en la mejora vegetal.

TEMA 8: INCOMPATIBILIDAD Y ANDROESTERILIDAD

Objetivo: conocer las interacciones entre el grano de polen y el estigma para lograr el control de la polinización.

- 8.1. Incompatibilidad: definición y clasificación de los sistemas de incompatibilidad.
- 8.2. La incompatibilidad y su utilización en el mejoramiento genético
- 8.3. Androesterilidad: definición y clasificación.

- 8.4. Conversión y mantenimiento de líneas androestériles. Restauradores de la fertilidad.
- 8.5. Producción de semilla híbrida usando androesterilidad.

TEMA 9: MÉTODOS DE MEJORA GENÉTICA EN ESPECIES VEGETALES

Objetivo: conocer las distintas alternativas para el mejoramiento integral de una especie.

- 9.a. MÉTODOS DE MEJORA EN ESPECIES AUTÓGAMAS
- 9.1. Poblaciones de plantas autógamas.
- 9.2. Clasificación de los métodos de mejora de las especies autógamas.
- 9.3. Introducción. Importancia y usos. Etapas.
- 9.4. Selección. Concepto y fundamentación. Teoría de la línea pura.
- 9.5. Selección Masal. Selección Individual.
- 9.6. Hibridación. Clases de cruzamientos.
- 9.7. Conducción de poblaciones segregantes. Sistemas de crianza: Método Masal. Método Genealógico.
- 9.8. Método de Descendencia de Semilla Única. Método de la Retrocruza.
- 9.9. Cultivares obtenidos en plantas autógamas.

9.b. MÉTODOS DE MEJORA EN ESPECIES ALÓGAMAS

- 9.10. Clasificación de los métodos de mejora de las especies alógamas.
- 9.11. Mejoramiento de poblaciones. Mejoramiento intrapoblacional: Selección Masal, estratificada y genética. Selección en base a Pruebas de Progenie: Selección Recurrente: simple y por Aptitud Combinatoria General y Específica.
- 9.12. Mejoramiento interpoblacional: Selección Recurrente Recíproca.
- 9.13. Variedades Sintéticas. Obtención, desarrollo e importancia.
- 9.14. Variedades híbridas. Obtención de las líneas endocriadas. Material de partida.
- 9.15. Evaluación de las líneas endocriadas. Aptitud combinatoria general y específica. Ensayos de prueba: top-cross.

Cruzamientos dialélicos. Momento de evaluar las líneas endocriadas.

- 9.16. Mejoramiento de las líneas endocriadas. Mantenimiento y multiplicación de las líneas endocriadas.
- 9.17. Predicción del comportamiento de los híbridos. Diferentes tipos de variedades híbridas.

9.c. MÉTODOS DE MEJORA EN ESPECIES DE PROPAGACIÓN ASEXUAL

- 9.18. Características de las poblaciones con reproducción asexual.
- 9.19. Selección Clonal. Hibridación y selección clonal.
- 9.20. Métodos de mejora en especies apomícticas.

TEMA 10: MEJORAMIENTO DE LA RESISTENCIA GENÉTICA Y DE LA CALIDAD

Objetivo: Comprender la importancia de la utilización de la resistencia genética y de la incorporación de genes de calidad.

- 10.1. Resistencia genética. Herencia de la resistencia. Expresión génica de la resistencia en el huésped. Variabilidad genética del patógeno. Interacción huésped-patógeno. Hipótesis Gen por Gen.
- 10.2. Resistencia vertical y resistencia horizontal. Fuentes de resistencia. Incorporación de los genes de resistencia. Variedades multilíneas.
- 10.3. Mejoramiento para resistencia a factores adversos: sequías, temperaturas extremas, condiciones edáficas.
- 10.4. Mejoramiento de la calidad industrial, comercial y nutricional de los cultivos.

TEMA 11: PRODUCCIÓN DE SEMILLAS

Objetivo: conocer el manejo de la semilla mejorada dentro del marco legal vigente.

- 11.1. Criaderos y Semilleros. Normas de aislamiento.
- 11.2. Categorías de semillas. Producción de semilla de las distintas categorías.
- 11.3. Ley de Semillas y Creaciones Fitogenéticas. Comercialización de semillas.
- 11.4. Inscripción de un cultivar. Registro de cultivares. Condiciones para el otorgamiento del título de propiedad. Derechos y obligaciones del obtentor.

PROGRAMA DE EXAMEN

Bolilla N° 1:

Tema 1: Introducción al mejoramiento genético vegetal

Tema 5: Herencia cuantitativa.

Bolilla N° 2:

Tema 2: Reproducción vegetal.

Tema 6: Los factores que afectan a la selección.

Bolilla N° 3:

Tema 3: Recursos genéticos.

Tema 7: Consanguinidad y heterosis.

Bolilla N° 4:

Tema 4: Conducción y análisis de ensayos de campo.

Tema 9-9.a.: Métodos de mejora en especies autógamas.

Bolilla N° 5:

Tema 8: Incompatibilidad y androesterilidad.

Tema 9- 9.b.: Métodos de mejora en especies alógamas.

Bolilla N° 6:

Tema 10: Mejoramiento de la resistencia genética y de la calidad.

Tema 5: Herencia cuantitativa.

Bolilla N° 7:

Tema 11: Producción de semillas.

Tema 6: Los factores que afectan a la selección.

Bolilla N° 8:

Tema 9-9.c.: Métodos de mejora en especies de propagación asexual.

Tema 5: Herencia cuantitativa.

Bolilla N° 9:

Tema 9- 9.a.: Métodos de mejora en especies autógamas.

Tema 3: Recursos genéticos.

Bolilla N° 10:

Tema 9- 9.b.: Métodos de mejora en especies alógamas.

Tema 6: Los factores que afectan a la selección.

s para el otorgamiento del título de propiedad. Derechos y obligaciones del Obtentor.

VII - Plan de Trabajos Prácticos

II - Plan de Trabajos Prácticos

T. P. N° 1: Reproducción vegetal.

T. P. N° 2: Técnicas específicas del Mejoramiento Genético Vegetal.

T. P. N° 3: Conducción y análisis de ensayos de campo.

T. P. N° 4: Herencia Cuantitativa:

4.1. Componentes de la variabilidad.

4.2. Componentes del rendimiento.

4.3. Heredabilidad.

4.4. Respuesta a la selección.

4.5. Interacción genotipo ambiente.

T. P. N° 5: Mejoramiento genético de especies autógamas.

T. P. N° 6: Mejoramiento genético de especies alógamas.

- T. P. N° 7: Mejoramiento genético de especies de propagación asexual.
- T. P. N° 8: Producción de semillas.

VIII - Regimen de Aprobación

1. RÉGIMEN DE APROBACIÓN POR EXAMEN FINAL:

1.1. Para alumnos regulares:

- . Aprobar los trabajos prácticos con el 80 % de asistencia y con la aprobación de las evaluaciones tomadas luego de la realización de cada trabajo práctico.
- . Aprobar 2 (dos) evaluaciones parciales con 6 (seis) puntos de un total de 10 (diez), cada una con dos recuperatorios según Ord. C.S. 32/14.
- . Exponer en forma oral un Seminario a determinar.

El examen final consta de la exposición oral de dos bolillas del programa de examen, elegidas al azar por el alumno.

1.2. Para alumnos libres:

- . Los interesados deberán presentarse en la Cátedra con 30 días de anticipación a la fecha del examen.
- . Luego de la presentación, le será entregado al alumno un tema relevante de la asignatura, el cual deberá ser analizado y expuesto ante los integrantes docentes de la asignatura, dos días antes a la fecha del examen.
- . Realización escrita de un examen de los temas desarrollados en los trabajos prácticos, durante el año inmediato anterior.
- . Realización del examen final en forma oral, a programa abierto.
- . El examen aprobado de temas prácticos tiene una validez de tres fechas de examen.
- . Cada una de las instancias es considerada eliminatoria.

2. RÉGIMEN DE APROBACIÓN SIN EXAMEN FINAL: no posee.

IX - Bibliografía Básica

- [1] -Allard, R. W. Principios de la mejora genética de las plantas. Ed. Omega S. A. Barcelona, España. 1980.
- [2] -Cubero, J. I. Introducción a la mejora genética vegetal. Ediciones Mundi-Prensa. Buenos Aires. Argentina. 2003.
- [3] -Fehr, W. R. Principles of cultivar development. Vol I. Theory y Technique. Macmilllian Publishing Company. 1993.
- [4] -Mariotti, J. A. La interacción genotipo ambiente, su significado e importancia en el mejoramiento genético y en la evaluación de cultivares. Secretaría general OEA. Washington, D. C. 1994.
- [5] -Mariotti, J. A. Fundamentos de genética biométrica. Aplicaciones al mejoramiento genético vegetal. Secretaría general OEA. Washington , D. C. 1978.
- [6] -Mariotti, J. A. y Collavino, N. G. los caracteres cuantitativos en la mejora genética de los cultivos. 2014. Primera edición. Orientación Gráfica Editora S.R.L.
- [7] -Poehlman, J. M. Mejoramiento genético de las cosechas. Ed. Limusa. México. 1971.

X - Bibliografia Complementaria

- [1] Brauer, O. H. Citogenética aplicada. Ed. Limusa, México. 1976.
- [2] Carámbula, M. Producción de semillas de plantas forrajeras. 1982.
- [3] Elliot, F. C. Citogenética y mejoramiento de plantas. Ed. Continental S. A., México.
- [4] Clausen, A. M.; Ferrer, M. E.; Formica, M. B. Situación de los Recursos Fitogenéticos en la Argentina. II Informe Nacional 1996-2006. Centro Regional buenos aires Sur. EEA Balcarce. 2008.
- [5] Falconer, D. S. Introducción a la genética cuantitativa. Ed. Cecsa, México. 2001.
- [6] Geoffrey Norman. Fisiología, mejoramiento, cultivo y utilización de la soja. Ed. Hemisferio Sur. 1983.
- [7] Hayes, H. K. y Immer, F. R. Métodos fitotécnicos. Ed. Acme Agency SRL. Argentina.
- [8] Hiorth, G. E. Genética cuantitativa. Tomo I, II y III. Córdoba, Argentina. 1985.
- [9] Hijano, E. Y Navarro, A. La alfalfa en la argentina. INTA. 1995.
- [10] Lacadena, J. R. Genética vegetal. Ed. Agesa. Madrid.
- [11] Marquez Sanchez, F. Genotecnia vegetal. Tomo I y II. AGT Editor S.A.. México. 1984.
- [12] Ramalho, M., Dos Santos, J., Zimmermann, M. Genética quantitativa em plantas autógamas. Editora DA UFG. Brasil.

1991.

- [13] Ramalho, M., Dos Santos, J., Pereira Pinto, C. Genética na agropecuaria. Ed. Globo. Brasil. 1989.
- [14] Raymond, A. T. Producción de semillas de plantas hortícolas. Ed. Mundi Prensa. Madrid. España.
- [15] Reyes Castañeda, P. Fitogenotecnia. Básica y aplicada. AGT Editor S.A.. México. 1985
- [16] Saumell, H. Girasol, técnicas actualizadas para su mejoramiento y cultivo. 1980.
- [17] Sanchez Monge y Parellada. Fitogenética. Mejora de plantas. INIA. Ministerio de Agricultura. Madrid, España. 1974.
- [18] Tombetta, E. Y Nisi, J. 100 años del trigo argentino. Evolución del mejoramiento, calidad y producción. INTA.
- [19] Vencovsky, R. Y Barriga, P. Genética biométrica no fitomelhoramento. Sociedade Brasileira de Genética. Brasil. 1992.
- [20] Vilela Morales, E., Candeira Valois, A., Nass, L. Recursos genéticos vegetales. Ministerio de Agricultura y de abatecimiento. Brasilia. Brasil.
- [21] Williams, W. Principios de la genética y de la mejora de las plantas. Ed. Acribia. España. 1965.

XI - Resumen de Objetivos

El Mejoramiento Genético Vegetal tiene como objetivo final la obtención de genotipos superiores tendientes a satisfacer las crecientes necesidades del hombre, dentro de un sistema de producción sostenible.

XII - Resumen del Programa

TEMA 1: INTRODUCCIÓN AL MEJORAMIENTO GENÉTICO VEGETAL

TEMA 2: REPRODUCCIÓN VEGETAL

TEMA 3: RECURSOS GENÉTICOS VEGETALES

TEMA 4: CONDUCCIÓN Y ANÁLISIS DE ENSAYOS DE CAMPO

TEMA 5: HERENCIA CUANTITATIVA

TEMA 6: LOS FACTORES QUE AFECTAN A LA SELECCIÓN

TEMA 7: ENDOCRÍA Y HETEROSIS

TEMA 8: INCOMPATIBILIDAD Y ANDROESTERILIDAD

TEMA 9: MÉTODOS DE MEJORA GENÉTICA EN PLANTAS

TEMA 10: MEJORAMIENTO DE LA RESISTENCIA GENÉTICA Y DE LA CALIDAD

TEMA 11: PRODUCCIÓN DE SEMILLAS

XIII - Imprevistos

Paros docentes

XIV - Otros