

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingenieria de Procesos Area: Procesos Físicos

(Programa del año 2015) (Programa en trámite de aprobación) (Presentado el 12/04/2015 21:29:56)

I - Oferta Académica

Materia	Carrera	Plan Año	Período
		Ord.C	
Fisicoquímica	Ing. Química	.D.02 2015	1° cuatrimestre
		4/12	

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ESQUENONI, SILVIA MATILDE	Prof. Responsable	P.Asoc Exc	40 Hs
FALIVENE JAMIER, CLAUDIO GUSTA	Responsable de Práctico	A.1ra Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
6 Hs	Hs	Hs	3 Hs	9 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
16/03/2015	26/06/2015	15	135

IV - Fundamentación

La asignatura FISICOQUIMICA forma parte del Plan de Estudios de Ingeniería Química, dictándose en el primer cuatrimestre del tercer año del mencionado Plan. La Fisicoquimica pertenece a las ciencias de la Ingeniería, incluyendo conocimientos de las Ciencias Básicas pero con orientación y aplicación propia de la especialidad. El Ingeniero Químico necesita adquirir los conocimientos básicos de la Fisicoquímica en vista de sus aplicaciones en procesos de separación, análisis de reactores químicos y diseño de procesos. Además, adquirir buen entendimiento de los principios del equilibrio y de la cinética química y capacidad para aplicarlos en la solución de problemas prácticos.

También se pretende que adquiera la capacidad para desempeñarse en el trabajo experimental, tanto desde el punto de vista de la prolijidad y exactitud en el manejo de material, como en la adquisición de una metodología rigurosa en el trabajo experimental. Se propone, también que desarrolle su capacidad de pensar independientemente, su espíritu critico y su capacidad creativa. Que aprenda a relacionarse armoniosamente con sus semejantes en un clima de colaboración y cordialidad. Que busque la verdad y contemple el orden y la armonía en la naturaleza que está observando.

V - Objetivos / Resultados de Aprendizaje

En particular se busca que el alumno desarrolle:

1.- Facilidad para aplicar las condiciones de equilibrio a sistemas heterogéneos constituídos por uno o más componentes.

- 2.- Capacidad para plantear y resolver problemas que atañen al comportamiento de soluciones líquidas reales.
- 3.- Facilidad para interpretar y aplicar datos de medidas de conductividades.
- 4.- Capacidad para calcular y medir potenciales de pilas y plantear problemas de estabilidad de metales.
- 5.- Capacidad para realizar un estudio mecanístico de laboratorio y encontrar la forma de inhibir o acelerar una reacción.
- 6.- Comprensión de las bases y conocimientos de las aplicaciones del equilibrio superficial.

VI - Contenidos

UNIDAD 1: EQUILIBRIO ENTRE FASES I

Sistemas de un componente. Ecuación de Clapeyron. Estabilidad de fases. Sistemas de varios componentes. Regla de las fases. Equilibrio entre soluciones ideales liquidas y gaseosas. Líneas de unión y regla de la palanca. Desviaciones de la ley de Raoult. Diagrama tridimensional para sistemas de dos componentes. Destilación de líquidos binarios. Soluciones diluidas. Solubilidad de gases.

UNIDAD 2: EQUILIBRIO ENTRE FASES II

Miscibilidad parcial. Destilación de mezclas inmiscibles y parcialmente miscibles. Distribución de un soluto entre dos solventes inmiscibles. Propiedades coligativas. Descenso de la temperatura de fusión. Elevación de la temperatura de ebullición. Solubilidad ideal de un sólido en un líquido. Presión osmótica. Equilibrio sólido-líquido en sistemas binarios. Representación gráfica de sistemas ternarios. Equilibrio sólido-líquido en sistemas ternarios.

UNIDAD 3: EQUILIBRIO EN LA FASE SUPERFICIE

Tensión superficial. Ecuación de adsorción de Gibbs. Superficies curvas. Películas superficiales. Adsorción sobre sólidos: distintos modelos. Doble capa eléctrica. Fenómenos electrocinéticos. Coloides. Jabones y detergentes.

UNIDAD 4: SOLUCIONES DE ELECTROLITOS

Termodinámica de soluciones de electrolitos. Conducción en celdas electrolíticas. Leyes de Faraday. Conductividad específica y equivalente. Medida de conductividad. Dependencia con la concentración. Leyes empíricas. Teoría elemental de la migración iónica. Teoría de Arrhenius de la disociación electrolítica. Mecanismo de transferencia protónica. Ley de dilución de Ostwald. Dependencia con la temperatura. Determinación del producto iónico del agua y de productos de solubilidad. Ecuación de Onsager. Determinación de números de transporte.

UNIDAD 5: EQUILIBRIO EN PILAS

Celdas electrolíticas y pilas. Potencial electroquímico. Convenciones. Electrodo normal de hidrógeno: Ecuación de Nernst. Potenciales normales de electrodos. Clases de electrodos. Potenciales de pilas. Cálculos de potenciales normales de pilas. Relación entre fuerza electromotriz de la pila y energía libre de la reacción de la pila. Cálculos de constantes de equilibrio. Ecuación de Nernst para pilas. Dependencia con la temperatura del potencial de una pila. Pilas de concentración.

UNIDAD 6: CINÉTICA DE REACCIONES

Velocidad de reacción. Orden de una reacción. Análisis de datos cinéticos. Medidas de velocidad de reacción. Reacciones elementales. Molecularidad. Ley de Arrhenius. Teoría del estado de transición. Reacciones complejas.

UNIDAD 7: CINÉTICA DE REACCIONES EN SOLUCIÓN

Comparación con la cinética en fase gaseosa. Reacciones entre iones: influencia del solvente y de la fuerza iónica. Reacciones que incluyen dipolos. Influencia de la presión. Catálisis homogénea. Catálisis ácido-base.

VII - Plan de Trabajos Prácticos

A.- TRABAJOS PRACTICOS DE LABORATORIO

- 1 .- Seguridad en el laboratorio
- 2.- Curvas de Calentamiento
- 3.- Diagrama de miscibilidad parcial para sistemas de dos componentes.
- 4.- Tensión superficial
- 5.- Angulo de contacto.
- 6.- Adsorción.

- 7-.-Conductividades de electrolitos.
- 8.- Estudio termodinámico de una pila.
- 9.- Determinación de velocidades de reacción.
- 10.- Determinación del orden de reacción.

B.- TRABAJOS PRACTICOS DE AULA

Se resolverán problemas relacionados con los temas de las clases teóricas.

VIII - Regimen de Aprobación

A.- TRABAJOS DE LABORATORIO

- 1.- El alumno concurrirá al laboratorio preparado para realizar el trabajo práctico. Se evaluarán los conocimientos mediante un cuestionario previo.
- 2.- El trabajo práctico se realizará con la guía y supervisión del personal auxiliar.
- 3.- El alumno deberá cumplir con el 100 % de asistencia a las prácticas de laboratorio y recuperará aquellas en las cuales estuvo ausente para obtener la regularidad.

B.- TRABAJOS PRÁCTICOS DE AULA

El alumno deberá cumplir con el 80 % de asistencia a los trabajos prácticos de aula.

C.- PARCIALES

Se tomarán dos parciales en el transcurso del cuatrimestre, los cuales tendrán cada uno dos recuperaciones. Consistirán de problemas similares a los resueltos en clase y de preguntas sobre las prácticas de laboratorio.

D.- REGULARIZACIÓN

Se obtendrá la regularización de la materia cumpliendo con los requisitos de asistencia a los trabajos prácticos de laboratorio y de aula, mediante la aprobación de los dos parciales y la presentación de la carpeta con los problemas resueltos y los informes de laboratorio. Para la aprobación de los parciales, los alumnos deberán obtener siete puntos en cada uno de ellos.

E.-APROBACION

Para aprobar la materia el alumno deberá rendir un examen oral.

El programa de exámen coincide con el programa analítico

F.- RÉGIMEN DE ALUMNOS LIBRES

El alumno deberá aprobar un examen escrito, el cual constará de problemas integradores de todos los temas contenidos en el programa y de preguntas sobre los trabajos de laboratorio. Habiendo aprobado el examen escrito, podrá rendir el examen oral sobre el programa analítico.

IX - Bibliografía Básica

- [1] Fisicoquímica. Castellan. 2da ed.1998 Fondo Educativo Interamericano. Puerto Rico.
- [2] Fisicoquimica. Atkins. 6ta Edición.1999 Iberoamericana.
- [3] Physical Chemistry. Atkins. Ed. University Press. Oxford. Sixth Edition.
- [4] Fisicoquimica. 4° Ed. Volumen I y I 2004.Ira Levine. Mc Graw Hill.
- [5] Introducción a la Termodinámica en Ing. Química. J. M. Smith y Van Ness.Ed. Mc Graw Hill.

X - Bibliografia Complementaria

- [1] Regla de las Fases. Findlay. Ed. Dover. New York.
- [2] Regla de las Fases. Ferguson. Ed. Alhambra. Madrid.
- [3] Electroquímica moderna. Bockris-Reddy. Ed. Reverté, S.A.
- [4] Kinetics and Mechanism. Frost y Pearson. Ed. John Wiley. New York.

XI - Resumen de Objetivos

La asignatura FISICOQUIMICA forma parte del Plan de Estudios de Ingeniería Química, dictándose en el primer cuatrimestre del tercer año del mencionado Plan. La Fisicoquimica pertenece a las ciencias de la Ingeniería, incluyendo conocimientos de las Ciencias Básicas pero con orientación y aplicación propia de la especialidad. La asignatura tiene como objetivo lograr que el alumno comprenda los procesos básicos de la Fisicoquímica y su aplicación al estudio de soluciones no ideales y equilibrio de fases, e introducir al alumno en el estudio de la cinética química.

XII - Resumen del Programa

Equilibrio entre fases para sistemas de uno y varios componentes. Sistemas binarios y ternarios. Termodinámica de soluciones de electrolitos. Conductividad de electrolitos. Termodinámica de pilas. Cinética química: análisis de datos y teorías. Cinética de reacciones en solución. Catálisis homogénea. Fenómenos superficiales

XIII - Imprevistos	
XIV - Otros	
ELEVA	CIÓN y APROBACIÓN DE ESTE PROGRAMA
	Profesor Responsable
Firma:	
T TITILL	
Aclaración:	
Fecha:	