

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ouímica Bioquímica y Farmacia **Departamento: Quimica**

(Programa del año 2015) (Programa en trámite de aprobación) (Presentado el 10/03/2015 14:36:52)

Area: Qca General e Inorganica

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
QUIMICA INORGANICA	PROF.EN QUIMICA	6/04	2015	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
NARDA, GRISELDA EDITH	Prof. Responsable	P.Tit. Exc	40 Hs
BERNINI, MARIA CELESTE	Responsable de Práctico	JTP Exc	40 Hs
LOPEZ, CARLOS ALBERTO	Responsable de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. To		Total		
5 Hs	Hs	Hs	3 Hs 8	

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
16/03/2015	26/06/2015	15	120

IV - Fundamentación

El curso pretende dar una formación básica en Química Inorgánica abordando temas generales de tendencias en la Tabla Periódica y temas más específicos donde se estudia la Química del Estado Sólido y Química de Coordinación. Los alumnos que inician el curso ya tienen la base de los principios básicos de Química y Fisicoquímica, los cuales son aplicados a la resolución de problemas para sistemas inorgánicos. Así, se aplican principios tales como Equilibrio Químico, Termodinámica, Cinética, etc. Los temas abordados serán de utilidad en cursos superiores donde se estudie Materiales

(propiedades y caracterización), Análisis Químico, Catálisis Homogénea y Heterogénea, Síntesis.

V - Objetivos / Resultados de Aprendizaje

Lograr que el alumno

- adquiera conocimientos sobre los conceptos de la Química Inorgánica y su relación con temas específicos de su carrera.
- pueda fundamentar las propiedades que presentan los elementos y sus compuestos analizando la Tabla Periódica por grupos, períodos y en forma diagonal.
- integre y aplique los conceptos vistos en Química General en análisis de los procesos de Química Inorgánica.
- sepa distinguir los procesos redox y los ácido-base.
- conozca y aplique los principios de la Química de Coordinación y de Sólidos.
- adquiera adiestramiento en el manejo de técnicas de laboratorio y se inicie en la aplicación de estrategias para resolver problemas concretos en el campo de la Química Inorgánica.
- conozca los medios y lugares en donde encontrar la información necesaria para resolver los problemas planteados (bibliografía, manuales, información on line).

• se informe y aplique las Normas de Seguridad en el manejo de productos químicos.

VI - Contenidos

Tema 1

Tipos de Sólidos: concepto de sólido amorfo y cristalino. Celda Unitaria. Red Espacial. Clasificación. Sistemas Cristalográficos. Sólidos iónicos, covalentes, moleculares, metálicos. Aleaciones y amalgamas. Cristalización y Solubilidad. Aplicación del concepto de Kps. Fundamentos y técnicas del proceso de cristalización.

Estructura Cristalinas. Redes típicas. Defectos reticulares. Uso de RX en la determinación de estructuras cristalinas.

Tema 2

Reactividad en Química Inorgánica. Análisis de parámetros termodinámicos y cinéticos relacionados con la espontaneidad y labilidad de un proceso. Reacciones ácido-base: conceptos de Lewis, Brönsted-Lowry y Pearson. Carácter ácido-base de especies en solución. Reacciones redox: equilibrios y espontaneidad. Ecuación de Nernst Sistematización de datos: Diagramas de Latimer, Frost, Pourbaix. Reacciones de Complejación. Reacciones de Descomposición Térmica.

Tema 3

Química de Coordinación. Tipos de Ligandos. Nomenclatura de complejos. Estereoquímica. Isomería. Estereoisomería. Isomería de posición. Conceptos de: compuestos de coordinación, quelatos, aductos, clusters, cúmulos, cubanos, pi-ácidos, organometálicos, metalocenos, clatratos, fullerenos. Teorías de Enlace en Química de Coordinación: Teoría de Lewis, Teoría del Campo Cristalino, Campo Ligando, Teoría del Enlace de Valencia y Teoría del Orbital Molecular. Efecto de Jahn-Teller. Color y Magnetismo. Estabilidad y Cinética. Ejemplos de complejos participantes en sistemas biológicos. Ejemplos de formación de complejos organometálicos aplicados en la industria. Mecanismos de reacción en la síntesis de complejos. Reactividad de complejos. Factores termodinámicos y cinéticos en la síntesis de complejos. Tipos de reacciones en la síntesis de complejos.

Tema 4

Tabla Periódica: tendencias horizontales, verticales, diagonales. Carga nuclear efectiva, radios iónicos, energía de ionización, afinidad electrónica. Principio de singularidad. Estudio de la variación sistemática de los elementos y sus compuestos. Carácter metálico. Variación del carácter ácido-base de óxidos e hidruros. Estados de oxidación. Poder polarizante. Geometría adoptada por los elementos en sus distintos estados de oxidación.

Tema 5

Elementos Representativos de los grupos 1 y 2. Generalidades. Tendencias y principales propiedades. Reactividad. Haluros, óxidos, peróxidos, superóxidos, hidróxidos, sales de oxoácidos. Análisis de las tendencias periódicas (solubilidad, estabilidad térmica). Química redox. Química de coordinación. Metalurgia. Aplicación en procesos industriales, biológicos y farmacológicos de los elementos de estos grupos.

Tema 6

Elementos Representativos de los grupos 13 y 14. Generalidades: configuración electrónica y estados de oxidación; estados iónicos y covalencias; efecto del par inerte. Tendencias y principales propiedades; casos del boro y del carbono. Estabilidad de óxidos, hidruros, haluros y otras sales. Química en solución. Química redox. Metalurgia. Aplicación en procesos industriales, biológicos y farmacológicos de los elementos de estos grupos.

Tema 7

Elementos Representativos de los grupos 15 y 16. Generalidades: configuración electrónica y estados de oxidación; estados iónicos y covalencias; efecto del par inerte. Tendencias y principales propiedades: variación del carácter metálico. Estabilidad de óxidos, hidruros, haluros y otras sales. Oxácidos, especies condensadas. Química en solución. Química redox. Metalurgia. Aplicación en procesos industriales, biológicos y farmacológicos de los elementos de este grupo.

Elementos Representativos de los grupos 17 y 18. Generalidades: configuración electrónica y estados de oxidación; estados iónicos y covalencias. Estabilidad de óxidos, hidruros, haluros y otras sales. Oxácidos. Química en solución. Química redox. Metalurgia. Aplicación en procesos industriales, biológicos y farmacológicos de los elementos de estos grupos.

Propiedades físicas y químicas de los gases nobles. Compuestos de xenón. Otros compuestos de los gases nobles. Hidrógeno:

isótopos del hidrógeno. Propiedades físicas y químicas del hidrógeno. Síntesis y usos del hidrógeno. Hidruros: clasificación y propiedades generales.

Tema 9

Elementos de Transición. Concepto. Clasificación. Metodología de estudio. Generalidades. Tendencias. Principales propiedades. Estudio de la química de los elementos de la primera serie de Transición. Estudio de los elementos de postransición.

Tema 10

Elementos de Transición. Estudio de la química de los elementos de la segunda y tercera serie de Transición. Lantánidos y actínidos. Generalidades y tendencias. Análisis de algunas propiedades de estos elementos.

Tema 11

Simetría en Química. Aplicación de simetría para la clasificación de sólidos. Modelo de empaquetamiento compacto. Redes finitas y redes infinitas. Estructuras típicas. Óxidos mixtos. Sustitución catiónica. Defectos reticulares. Aplicación de difracción de Rx en la determinación de estructuras cristalinas: método de polvos y monocristal.

Tema 12

Caracterización espectroscópica de compuestos inorgánicos. Espectroscopia visible aplicada a compuestos de coordinación. Interpretación de espectros. Estados de Russell-Saunders. Diagramas de Orgel. Espectroscopia infrarrojo. Fundamentos. Interpretación de espectros.

Tema 13

Sistematización de la Química Redox. Potenciales de reducción estándar, E° y su relación con G° y K. Diagramas de Latimer, Frost. Manejo de diagramas de Ellingham y Pourbaix. Aplicaciones. Procesos metalúrgicos.

Tema 14

Núcleo atómico. Núclido. Tabla de núclidos, concepto y uso. Radioactividad: concepto. Actividad. Ecuación fundamental de la radioquímica. Tiempo de vida media. Radioactividad natural: tipos de emisión (, \(\beta\)+, \(\beta\)-, , etc.). Poder de ionización y penetración. Ley del corrimiento. (Series radiactivas naturales). Separación de isótopos radiactivos. Reacciones. Separación de isótopos. Reacciones nucleares artificiales. Elementos transuránicos. Fisión y fusión nuclear. Aplicaciones industriales, biológicas y analíticas de los radionúclidos.

VII - Plan de Trabajos Prácticos

PLAN DE TRABAJOS DE AULA Y SEMINARIOS.

- 1. Aplicación del concepto de Kps a Solubilidad de compuestos inorgánicos. Manejo de Curvas de Solubilidad. Tipos de Sólidos. Problemas. (2 hs)
- 2. Determinación de Simetría en especies diversas. Empaquetamientos: cálculos y manejo de modelos. (2 hs)
- 3. Cálculos de Reactividad I. (incluye sólidos, gases y soluciones) (3 hs)
- 4. Cálculos de Reactividad II (incluye sólidos, gases y soluciones) (3 hs)
- 5. Nomenclatura de complejos. Estereoquímica. Ejercicios. (2 hs)
- 6. Teorías en Química de Coordinación. Ejercicios y problemas. (2 hs)
- 7. Algunos aspectos sistemáticos de las tres Series de Transición, bloque d Resolución de cuestionarios. Parte 1 (3 hs)
- 8. Algunos aspectos sistemáticos de las tres Series de Transición, bloque d y f. Resolución de cuestionarios. Parte 2 (3 hs).

- 9. Elementos Representativos. Resolución de cuestionarios. Parte 1. (3 hs)
- 10. Elementos Representativos. Resolución de cuestionarios. Parte 2. (3 hs)
- 11. Análisis de espectros electrónicos y propiedades magnéticas de complejos. (2 hs)
- 12. Sistemas. Redox. Usos de Diagramas. Cálculos. (2 hs)
- 13. Síntesis en Química Inorgánica. Cálculos estequiométricos y de rendimiento (3 hs)
- 14. Profundización en los aspectos sistemáticos de las tres Series de Transición bloque d y Elementos Representativos. Seminarios. (2 hs)
- 15. Radioquímica: Reacciones. Aplicaciones (2 hs)

PLAN DE TRABAJOS PRACTICOS DE LABORATORIO

- Procesos de cristalización y solubilidad. Técnicas de separación por cristalización-precipitación. Disolución.
 Cristalización. Filtración. Decantación. Centrifugación. Purificación de sólidos: cristalización fraccionada. Secado de sólidos.
 3 hs.
- 2. Difracción de Rx (DRX): caracterización de sólidos cristalinos; resolución de un sólido cúbico. 3 hs
- 3. Reacciones ácido-base, redox, endotérmicas y exotérmicas. 3 hs.
- 4. Compuestos de coordinación. Síntesis por diversas técnicas. 3 hs
- 5. Espectros de absorción de complejos: espectros electrónicos UV-visible 3 hs
- 6. Elementos de transición y post-transición: Equilibrios ácido-base y redox en 1ra serie de transición. Equilibrios ácido-base y redox en post-transición, 2da y 3ra serie de transición. 3 hs.
- 7. Elementos representativos: Principales reacciones de los elementos de los bloque s y p. Electrólisis de cloruro de sodio (potenciales redox). Obtención de geles-coloides Al(OH)3 y H2SiO3 y otros. 3hs.
- 8. Síntesis y caracterización integral de un Compuesto Inorgánico. 6 hs

NORMAS GENERALES DE SEGURIDAD

Condiciones de trabajo: Prevención. Normas de seguridad. Cuidado y limpieza del lugar de trabajo. Señalizaciones. Código de colores.

Hábitos de trabajo: Ubicación del material de seguridad como extintores, duchas de seguridad, lavaojos, botiquín, etc. Etiquetas y fichas de datos de seguridad de los productos. Campanas.

Protección personal: Normas básicas. Criterio y grados de protección. Elementos de protección personal. Guantes de seguridad. Guardapolvos. Gafas de seguridad.

Seguridad en el laboratorio: Seguridad en la manipulación de materiales y/o sustancias. Derrames. Tratamiento de polvos, gases y humos. Tratamiento de residuos.

VIII - Regimen de Aprobación

- El Curso está estructurado en clases Teóricas y en Trabajos Prácticos de Aula y de Laboratorio, según las reglamentaciones rectorales y de Facultad vigentes.
- 1- Trabajos Prácticos

• Trabajos Prácticos de Aula

Cada práctico se desarrollará en una o más jornadas en los horarios convenidos para tal fin. El alumno deberá asistir, al menos, al 80% de las clases prácticas para lograr la regularidad.

• Trabajos Prácticos de Laboratorio

Se prevé la realización de Trabajos Prácticos de Laboratorio, debiendo el alumno aprobar el 100% de los mismos para lograr la regularidad. Para poder realizar la práctica de laboratorio, el alumno deberá aprobar un cuestionario escrito previo a la realización de las experiencias. El acceso al primer sistema de recuperaciones de Trabajos Prácticos de Laboratorio se logra cuando el alumno haya aprobado en primera instancia el 70% de los prácticos realizados.

2- Exámenes parciales

Los Trabajos Prácticos (de aula y laboratorio) se evaluarán a través de exámenes parciales cuyas fechas y horarios serán publicados con la debida antelación. Para poder rendir los exámenes parciales, el alumno deberá haber aprobado previamente los Trabajos Prácticos de Laboratorio correspondientes a la evaluación. Para lograr la regularidad, el alumno deberá aprobar el 100% de los exámenes parciales, con el 70% de las respuestas correctas, teniendo derecho a dos recuperaciones para cada parcial.

a. Condición de REGULAR

Alcanzadas las condiciones arriba mencionadas sobre los Trabajos Prácticos de aula y laboratorio, el alumno adquirirá la condición de regular.

b. Condición PROMOCION SIN EXAMEN FINAL

Esta opción no está disponible para este curso.

EXAMEN FINAL

Para lograr la aprobación del curso deberá rendir un examen final que podrá ser escrito u oral en los turnos que estipule la Facultad de Química, Bioquímica y Farmacia según el calendario académico.

El alumno podrá optar rendir el Examen Final como alumno Libre en fecha y horario estipulado por los responsables del curso. Se evaluará en una primera etapa los contenidos de los Trabajos Prácticos de Aula mediante un examen escrito; en una segunda etapa, se evaluarán los contenidos correspondientes a los Trabajos Prácticos de Laboratorio y la realización de uno de ellos. Aprobadas ambas instancias con un 70% de respuestas correctas, el alumno estará en condiciones de rendir los contenidos teóricos del curso a través de un examen escrito u oral en los turnos que estipule la Facultad de Química, Bioquímica y Farmacia según el calendario académico.

IX - Bibliografía Básica

- [1] C. E. Housecroft, A.G. Sharpe "Química Inorgánica", Pearson Prentice Hall. Pearson Educación S.A., (Trad. Española), Madrid, 2006.
- [2] D.F.Shriver and P.W.Atkins,"Química Inorgánica", 4ta Edición, Ed. Mc. Graw Hill, (Trad. Española) Buenos Aires. (2006).
- [3] D. F. Shriver, P. W. Atkins and C. H. Langford, "Química Inorgánica", Ed.Reverté, Volumenes 1 y 2. (1998)
- [4] S. Baggio, M.A.Blesa, H. Fernandez, "Química Inorgánica. Teoría y Práctica". 1ª Ed. UNSAM EDITA (2012)
- [5] Guías de Estudio Química Inorgánica. José C. Pedregosa y Equipo colaborador (2008).
- [6] Portales de Internet (Consultar a los docentes a cargo de la materia para este tipo de búsquedas).

X - Bibliografia Complementaria

- [1] F. A. Cotton y G. Wilkinson, "Química Inorgánica Avanzada", Trad. Española de la 4ta Edición, Ed. Limusa, México, 1990.
- [2] D.M.P. Mingos, "Essential Trends in Inorganic Chemistry", Oxford University Press, Oxford, 1998.
- [3] I. S. Butler y J. F. Harrod, "Química Inorgánica: Principios y Aplicaciones", Trad. española, Addison-Wesley Iberoamericana, Delawere, USA, 1992.
- [4] A. G. Sharpe, "Química Inorgánica", Editorial Reverté, Barcelona-Bs.As, 1989.
- [5] G. E. Rodgers, "Química Inorgánica: Introducción a la Química de Coordinación, Estado Sólido y Descriptiva Mc.Graw-Hill, Madrid-Buenos Aires, 1995.
- [6] J. E. Huheey, "Química Inorgánica: Principios de Estructura y Reactividad", Harla S.A., 1981.
- [7] G.L.Miessler and D. A. Tarr, "Inorganic Chemistry", 2da Ed., Prentice Hall, New Jersey, 1998.
- [8] D.F.Shriver, P.W.Atkins and C.H.Langford, "Inorganic chemistry", Oxford University Press, Oxford, 1990

[9] N.N.Greenwood and a. Earnshaw, "Chemistry of the Elements", 5ta Ed., Pergamon Press, Oxford, 1986.

[10] D.M.Adams, "Inorganic Solids", Wiley, New York, 1974.

[11] B. Douglas, D. McDaniel and J. Alexander, "Concepts and models of Inorganic Chemistry", J. Wiley and Sons, New York, 1994.

XI - Resumen de Objetivos

Transmitir a los estudiantes los conceptos de la Química Inorgánica necesarios como base para el análisis y justificación de procesos en los que participan compuestos inorgánicos. Estudio comparativo de sus propiedades analizando las tendencias periódicas. Desarrollar nuevas habilidades y destrezas mediante la aplicación de principios y conceptos vistos previamente por el alumno, profundizar el grado de conocimiento y proyectar el mismo a las necesidades de cursos superiores.

XII - Resumen del Programa

Los sólidos y los procesos de separación en Química Inorgánica. Reactividad en Química Inorgánica: Procesos ácido-base y redox. Química del Estado Sólido. Química de Coordinación: conceptos y teorías de enlace. Estudio general fundamentado de las tendencias de propiedades verticales, horizontales y diagonales en la Tabla Periódica. Radioquímica.

de las tendencias de propiedades veri	ticales, norizontales y diagonales en la Tabla Feriodica. Radioquillica.
XIII - Imprevistos	
XIV - Otros	
	CIÁN APPORACIÓN DE ECCE PROCEDAMA
ELEVA	CIÓN y APROBACIÓN DE ESTE PROGRAMA
	Profesor Responsable
Firma:	
Aclaración:	
Fecha:	