

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Automatización

(Programa del año 2013) (Programa en trámite de aprobación) (Presentado el 01/08/2013 15:42:46)

I - Oferta Académica

Materia	Carrera	Plan Año	Período
Equipos y Dispositivos Industriales	Téc. Univ. en Aut. Ind. Or. I	010/0 8 2013	1° cuatrim.DESF

II - Equipo Docente

Docente	Función	Cargo	Dedicación
MARTÍNEZ, GUILLERMO ARIEL	Prof. Responsable	P.Adj Semi	20 Hs
RODRIGUEZ PIATTI, JAVIER ANGEL	Responsable de Práctico	A.1ra Simp	10 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
6 Hs	2 Hs	3 Hs	1 Hs	6 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	1° Cuatr. Desfa

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
08/08/2013	15/11/2013	15	90

IV - Fundamentación

La propuesta de este curso es conocer los equipos y dispositivos mas utilizados industrial mente para la protección de personas e instalaciones. Conocer sobre los distintos tipos de motores, sensores y demás dispositivos de comando.

V - Objetivos / Resultados de Aprendizaje

El objetivo de este curso es conocer los dispositivos industriales para la protección de personas e instalaciones. Aprender sobre las diferentes formas de controlar señales a través de sensores, relees, contactores y temporizadores. Aprender a conectar, controlar y automatizar motores de corriente continua, corriente alterna y paso a paso. Funcionamiento de los motores eléctricos mas utilizados industrial mente. Diagramas de conexionados.

VI - Contenidos

Unidad 1: Dispositivos de protección

- 1.1 Fusibles
 - 1.1.1 Clasificación
 - 1.1.2 Curvas de disparo
 - 1.1.3 Selectividad

1.2 - Interruptor termo-Magnético

- 1.2.1 Funcionamiento
- 1.2.2 Clasificación
- 1.2.3 Curvas de disparo

- 1.2.4 Tablas de Selección
- 1.2.5 Selectividad
- 1.3 Interruptor Diferencial
 - 1.3.1 Funcionamiento
 - 1.3.2 Clasificación
 - 1.3.3 Curvas de disparo
 - 1.3.4 Tablas de selección
- 1.4 Guardamotor
 - 1.4.1 Funcionamiento
 - 1.4.2 Curvas de disparo
 - 1.4.3 Tablas de Selección.

Unidad 2: Dispositivos de Maniobra

- 2.1 Contactores
 - 2.1.1 Funcionamiento y características
 - 2.1.2 Clasificación
 - 2.1.3 Tablas de Selección
 - 2.1.4 Ejercicios de utilización
- 2.2 Temporizadores
 - 2.2.1 Funcionamiento
 - 2.2.2 Clasificación
 - 2.2.3 Tablas de selección
 - 2.2.4 Ejercicios de utilización.

Unidad 3: Sensores

- 3.1 Sensores Resistivos
 - 3.1.1 Potenciométricos
 - 3.1.2 Galgas Extensiométricas
 - 3.1.3 RTD (Detectores de Temperatura Resistivos)
 - 3.1.4 Termistores
 - 3.1.5 Fotores Restencias (LDR)
 - 3.1.6 Higrómetros resistivos
- 3.2 Sensores Digitales
 - 3.2.1 Switchs
 - 3.2.2 Micro- Switchs
 - 3.2.3 Infrarrojos Optoacoplados
 - 3.2.4 Codificadores Incrementales y absolutos
 - 3.2.5 Resolver (Codificador)
- 3.3 Sensores Inductivos
 - 3.3.1 Dos hilos
 - 3.3.2 Tres hilos
 - 3.3.3 Apantallados y no Apantallados
 - 3.3.4 Distancia de Sensado
 - 3.3.5 Alimentación
- 3.4 Sensores Capacitivos
 - 3.4.1 Dos hilos
 - 3.4.2 Tres hilos
 - 3.4.3 Apantallados y no Apantallados
 - 3.4.4 Distancia de Sensado
 - 3.4.5 Alimentación
- 3.5 Sensores de Efecto Hall

Unidad 4: Motores Corriente continua

- 4.1 Introducción
- 4.2 Clasificación (Serie, Paralelo, etc.)
- 4.3 Control de Motores de C.C
- 4.4 Control de Velocidad de Motores de C.C

Unidad 5: Motores de Corriente Alterna

- 5.1 Introducción
- 5.2 Clasificación
- 5.3 Control de Motores de C.A
- 5.4 Control de Velocidad de Motores de C.A
- 5.5 Variador de Frecuencia

Unidad 6: Motores Paso a Paso

- 6.1 Introducción
- 6.2 Clasificación
- 6.3 Secuencias
 - 5.3.1 Paso Completo
 - 6.3.2 Medio Paso
- 6.4 Controladores de Bajo Nivel (Circuito y Aplicación)
- 6.5 Controladores de Alto Nivel (Circuito y Aplicación)

VII - Plan de Trabajos Prácticos

Metodología

El curso se desarrollará en clase teórico-prácticas.

El desarrollo de la asignatura se realiza de acuerdo a la planificación diaria realizada por el equipo docente.

Los trabajos prácticos son recuperables.

Práctico N: 0

Normas de Seguridad

Práctico N: 1

Conexionado de Fusibles e Interruptores (Aula y Laboratorio).

Práctico N: 2

Práctica con Sensores (Aula y Laboratorio)

Práctico N: 3

Puesta en Marcha de Motores de C.C

Práctico N: 4

Puesta en Marcha de Motores de C.A

Práctico N: 5

Puesta en Marcha de Motores P.A.P

VIII - Regimen de Aprobación

Régimen de Aprobación.

Para Promocionar:

- Aprobación de parcial teórico con mas del 70%
- Aprobación de parcial Práctico con mas del 70%
- Aprobación de los trabajos prácticos 100%
- Asistencia del 80% como mínimo.

Para Regularizar:

- Aprobación de parcial Práctico con mas del 70%
- Aprobación de los trabajos prácticos 100%
- Asistencia del 70% como mínimo.

Todos los parciales cuentan con una recuperación y para los alumnos que trabajan tienen una recuperación extra.

IX - Bibliografía Básica

- [1] 1- Instalaciones eléctricas de baja tensión :diseño, cálculo, dirección, seguridad y montaje. Autores: Antonio Colmenar Santos y Juan Luis Hernández Martín. Edisión: 1a. ed. / Madrid : Ra-Ma, 2008. ISBN: 9788478978403.
- [2] 2- Intalaciones electricas Tomo II : Cables y conductores. Aparatos de protección. autor: Seip, G. G. Edición: 02 ed., 1989 ISBN: 3800915448
- [3] 3 Sistemas de medición e instrumentación : diseño y aplicación. Autor: Ernest O. Doebelin. 1a. ed. / México : McGraw-Hill/Interamericana editores, 2005. ISBN: 9701049772.

X - Bibliografia Complementaria

- [1] Apuntes de Cátedra.
- [2] Manual de baja Tensión Scheneider electric.

XI - Resumen de Objetivos

El objetivo de este curso es conocer los dispositivos industriales para la protección de personas e instalaciones. Aprender sobre las diferentes formas de controlar señales a través de sensores, relees, contactores y temporizadores. Aprender a conectar, controlar y automatizar motores de corriente continua, corriente alterna y paso a paso. Funcionamiento de los motores eléctricos mas utilizados industrial mente. Diagramas de conexionados.

XII - Resumen del Programa

Unidad 1: Dispositivos de protección

- 1.1 Fusibles
 - 1.1.1 Clasificación
 - 1.1.2 Curvas de disparo
 - 1.1.3 Selectividad
- 1.2 Interruptor termo-Magnético
 - 1.2.1 Funcionamiento
 - 1.2.2 Clasificación
 - 1.2.3 Curvas de disparo
 - 1.2.4 Tablas de Selección
 - 1.2.5 Selectividad
- 1.3 Interruptor Diferencial
 - 1.3.1 Funcionamiento
 - 1.3.2 Clasificación
 - 1.3.3 Curvas de disparo
 - 1.3.4 Tablas de selección
- 1.4 Guardamotor
 - 1.4.1 Funcionamiento
 - 1.4.2 Curvas de disparo
 - 1.4.3 Tablas de Selección.

Unidad 2: Dispositivos de Maniobra

- 2.1 Contactores
 - 2.1.1 Funcionamiento y características
 - 2.1.2 Clasificación
 - 2.1.3 Tablas de Selección
 - 2.1.4 Ejercicios de utilización
- 2.2 Temporizadores
 - 2.2.1 Funcionamiento
 - 2.2.2 Clasificación
 - 2.2.3 Tablas de selección
 - 2.2.4 Ejercicios de utilización.

Unidad 3: Sensores

3.1 Sensores Resistivos 3.1.1 - Potenciométricos 3.1.2 - Galgas Extensiométricas 3.1.3 - RTD (Detectores de Temperatura Resistivos) 3.1.4 - Termistores 3.1.5 - Fotores Restencias (LDR) 3.1.6 - Higrómetros resistivos 3.2 Sensores Digitales 3.2.1 - Switchs 3.2.2 - Micro- Switchs 3.2.3 - Infrarrojos Optoacoplados 3.2.4 - Codificadores Incrementales y absolutos 3.2.5 - Resolver (Codificador) 3.3 Sensores Inductivos 3.3.1 - Dos hilos 3.3.2 - Tres hilos 3.3.3 - Apantallados y no Apantallados 3.3.4 - Distancia de Sensado 3.3.5 - Alimentación 3.4 Sensores Capacitivos 3.4.1 - Dos hilos 3.4.2 - Tres hilos 3.4.3 - Apantallados y no Apantallados 3.4.4 - Distancia de Sensado 3.4.5 - Alimentación 3.5 Sensores de Efecto Hall Unidad 4: Motores Corriente continua 4.1 Introducción 4.2 Clasificación (Serie, Paralelo, etc.) 4.3 Control de Motores de C.C 4.4 Control de Velocidad de Motores de C.C Unidad 5: Motores de Corriente Alterna 5.1 - Introducción 5.2 - Clasificación 5.3 - Control de Motores de C.A 5.4 - Control de Velocidad de Motores de C.A 5.5 - Variador de Frecuencia Unidad 6: Motores Paso a Paso 6.1 - Introducción 6.2 - Clasificación 6.3 - Secuencias 5.3.1 - Paso Completo 6.3.2 - Medio Paso 6.4 Controladores de Bajo Nivel (Circuito y Aplicación) 6.5 Controladores de Alto Nivel (Circuito y Aplicación)

XIII - Imprevistos

XIV -	Otros	
-------	-------	--

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		