

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingenieria de Procesos Area: Ingenieria de Procesos Migracion

(Programa del año 2013) (Programa en trámite de aprobación) (Presentado el 14/06/2013 09:47:45)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
		Ord.C		
Propiedades y Tecnología de los Materiales	Ing. en Alimentos	.D.02	2013	2° cuatrimestre
		3/12		

II - Equipo Docente

Docente	Función	Cargo	Dedicación
MAERO, IVANA SILVIA	Prof. Responsable	P.Adj Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
4 Hs	Hs	Hs	1 Hs	5 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre	

	D	uración	
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
08/08/2013	15/11/2013	15	75

IV - Fundamentación

La asignatura Propiedades y Tecnología de los Materiales está ubicada en el octavo cuatrimestre de la carrera y se considera como complementaria en la formación profesional del ingeniero que se vincule con la actividad industrial. El conocimiento de los distintos temas que involucra el desarrollo del curso le permitirán al alumno conocer la diversidad de materiales de uso en ingeniería como también sus propiedades y comportamiento mecánico.

V - Objetivos / Resultados de Aprendizaje

Estudiar los principales materiales de la ingeniería, analizando sus propiedades y usos industriales, siendo el principal objetivo preparar a los alumnos y darles las herramientas necesarias para que puedan efectuar la selección de materiales para las distintas aplicaciones que se les presenten en la vida profesional.

VI - Contenidos

Unidad Nº 1: Clasificación de los materiales

Introducción a la ciencia e ingeniería de materiales. Clasificación de los materiales. Propiedades mecánicas de los materiales.

Unidad Nº 2: Estructura y arreglos atómicos y iónicos.

La estructura de los materiales: importancia tecnológica. Enlazamiento atómico. Enlace metálico. Enlace covalente. Enlace iónico. Enlace de Van der Waals. Materiales amorfos. Estructuras cristalinas. Imperfecciones en los arreglos atómicos y iónicos. Importancia de los defectos.

Unidad Nº 3: Propiedades y comportamiento mecánico.

Terminología de las propiedades mecánicas. El ensayo de tensión: uso del diagrama esfuerzo-deformación. Propiedades obtenidas en el ensayo de tensión. Ensayo de flexión para materiales frágiles. Dureza de los materiales. El ensayo de compresión. El ensayo de impacto.

Trabajo Práctico de laboratorio Nº 1.

Trabajo Práctico de laboratorio Nº 2.

Unidad Nº 4: Aleaciones ferrosas.

Introducción. Proceso de obtención de acero. Diagrama hierro-carbono. Tratamientos térmicos simples. Tratamientos térmicos de templado, revenido, recocido y normalizado. Curva de la "S". Hierros fundidos.

Trabajo Práctico de laboratorio Nº 3.

Trabajo Práctico Nº 4: Búsqueda de información sobre la aplicación de las aleaciones ferrosas en la industria de los envases para alimentos.

Unidad Nº 5: Materiales cerámicos.

Aplicaciones de los materiales cerámicos. Propiedades. Síntesis de los polvos cerámicos. Procesamiento de los polvos.

Vidrios inorgánicos. Otros materiales cerámicos.

Trabajo Práctico Nº 5.

Unidad Nº 6: Materiales poliméricos.

Clasificación de los polímeros. Polimerización. Relaciones estructura-propiedades en los termoplásticos. Propiedades mecánicas de los termoplásticos. Elastómeros. Polímeros termoestables. Procesamiento de los polímeros.

Trabajo Práctico Nº6: Búsqueda de información sobre la aplicación de los materiales poliméricos en la industria de envases para alimentos.

Trabajo Práctico Nº 7.

Unidad Nº 7: Materiales compuestos.

Introducción. Materiales compuestos: particulados, reforzados con fibras. Manufactura de fibras. Materiales compuestos de matriz polimérica. Materiales compuestos de matriz metálica. Materiales compuestos de matriz cerámica.

VII - Plan de Trabajos Prácticos

Práctico de Laboratorio Nº 1: Ensayo de tracción. Ensayos de dureza: Rockwell, Vickers y Brinell. Ensayo de compresión.

Ensayo de Impacto (Charpy). Centro de Investigación y Ensayo de Materiales (CIEM) - FICES.

Práctico de Laboratorio Nº 2: Ensayos no destructivos: Tintas penetrantes y Ultrasonido. (CIEM − FICES).

Práctico de Laboratorio Nº 3: Nociones de metalografía: preparación de muestras metálicas. Análisis de micro-estructuras en diferentes clases de aceros. Identificación de grietas y tratamientos superficiales en aceros. (CIEM – FICES).

Trabajo Práctico Nº4: Búsqueda y exposición de información sobre la aplicación de las aleaciones ferrosas en la industria de los envases para alimentos.

Trabajo Práctico Nº 5: Visita a planta industrial – materiales cerámicos tradicionales.

Trabajo Práctico Nº6: Búsqueda y exposición de información sobre la aplicación de los materiales poliméricos en la industria de los envases para alimentos.

Trabajo Práctico Nº 7: Visita a planta industrial – envases flexibles.

Trabajo Práctico Nº8: Visita a planta industrial – materiales compuestos (cartón corrugado).

VIII - Regimen de Aprobación

Se considera obligatoria la asistencia al 80% de clases teórico-prácticas de la asignatura. Se considera obligatoria la asistencia a la totalidad de los trabajos prácticos de laboratorio que se realicen como así también las visitas a las plantas industriales para complementar los conocimientos teóricos; el alumno que por alguna razón no pudiera asistir a cualquiera de estos trabajos prácticos (CIEM o fábrica) presentará una monografía sobre el tema relacionado y lo expondrá de forma oral en la clase posterior a dicho evento.

Se evalúan, mediante cuestionarios por escrito y en forma separada cada una de las unidades temáticas del programa de estudio.

Los alumnos regulares serán aquellos que cumplan con la asistencia a las clases teórico-prácticas, prácticos de laboratorio (CIEM) y visitas a fábricas y además obtengan una calificación mínima de 4 (cuatro) puntos en cada uno de los parciales. Los cuestionarios tendrán 1 (una) opción de recuperación, cuando la calificación sea inferior a 4 (cuatro) para su regularización.

Podrán promocionar la asignatura los alumnos que obtengan en cada uno de los cuestionarios una calificación de 8 (ocho) puntos, en primera instancia y cumplan con los requisitos de asistencia a clases teórico-prácticas, prácticos de laboratorio (CIEM) y visitas a fábricas y que tengan las asignaturas correlativas rendidas y/o regularizadas según corresponda.

Examen final:

Será de carácter oral y consistirá en la exposición de temas del programa de la asignatura para lo cual se sacarán al azar dos bolillas con temas del programa académico y se podrá interrogar con cualquier otro tema del mismo. Se aprueba con un mínimo de 4 (cuatro) puntos en cada una de las bolillas seleccionadas. La escala es del 1 al 10.

IX - Bibliografía Básica

- [1] ASKELAND D. Ciencia e Ingeniería de los Materiales. Cuarta edición. Thomson.
- [2] BARREIRO J. Tratamientos térmicos de los aceros. Décima edición. Cie Inversiones Editoriales Dossat 2000 S.L.
- [3] NASH W. Resistencia de Materiales. Mc Graw Hill.
- [4] PERO-SANZ ELORZ J. Ciencia e Ingeniería de Materiales. Cuarta edición. Cie Inversiones Editoriales Dossat 2000.

X - Bibliografia Complementaria

- [1] BARRÓN E., POLÍMEROS: Estructura, Propiedades y Aplicaciones. Editorial Limusa.
- [2] GONZÁLEZ ARIAS A. Laboratorio de Ensayos Industriales. Ediciones Litenia.
- [3] STEPHENSON R. Introducción a los Procesos Químicos Industriales.

XI - Resumen de Objetivos

Tiene como objetivo lograr que el alumno adquiera un conocimiento integral de los materiales de uso en la ingeniería.

XII - Resumen del Programa

Unidad Nº 1: Clasificación de los materiales.

Unidad Nº 2: Estructura y arreglos atómicos y iónicos.

Unidad Nº 3: Propiedades y comportamiento mecánico.

Unidad Nº 4: Aleaciones ferrosas.

Unidad Nº 5: Materiales cerámicos.

Unidad Nº 6: Materiales poliméricos.

Unidad Nº 7: Materiales compuestos.

XIII - Imprevistos

Se considera una organización dinámica y flexible de la asignatura, que tratará de adaptarse a los imprevistos que pudieran tener lugar.

XIV - Otros

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		