

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ciencias Agropecuarias Area: Ciencias Agropecuarias Migracion

(Programa del año 2013) (Programa en trámite de aprobación) (Presentado el 08/05/2013 15:34:34)

I - Oferta Académica

Materia	Carrera	Plan Año	Período
Morfología Vegetal	Ingeniería Agronómica	011/0 4 2013	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	4 Hs	Hs	3 Hs	7 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
08/08/2013	15/11/2013	15	98

IV - Fundamentación

Morfolología Vegetal se dicta en el segundo cuatrimestre de primer año, siendo una asignatura básica para las ciencias biológicas. Aporta los conocimientos indispensables de la estructura vegetal a partir de los siguientes grupos temáticos: Citología, Exomorfología, Histología, Organografía, Estrategia de Supervivencia de las Especies y Reproducción. Los contenidos seleccionados serán utilizados para formar un profesional capacitado en el manejo de sistemas de producción agropecuaria. Teniendo en cuenta el plan de estudio de la carrera los conocinientos serán utilizados en las siguientes asignaturas: Botánica Sistemática, Fisiología Vegetal, Genética, Mejoramiento Genét. Veg., Ecología y Patizales Nat., Fitopatología Vegetal, Forrajicultura, Horticultura, Dasonomía, Fruticultura, Cereales, Parques y Jardines. Se considera que el contenido seleccionado es potencialmente significativo, tanto desde el punto de vista de la estructura lógica de la disciplina como de la posible asimilación por el alumno. En este sentido, el alumno debe estar motivado para relacionar lo que aprende con lo que ya sabe, es decir las tareas que se planifiquen deben tener en cuenta los saberes de los que el alumno dispone al iniciar esta asignatura. Teniendo en cuenta que traen un lenguaje impreciso, términos indiferenciados para expresar sus ideas, y conceptos erróneos persistentes y difíciles de modificar, se requiere la utilización de estrategias didácticas como puntos de partida para mejorar y promover el cambio conceptual, adquirir destrezas y actitudes científicas.

Desde esta perspectiva se desarrollarán instancias de desarrollo teórico, previas a las actividades prácticas implementándose modalidades de evaluación en forma continua, asumiendo que los procesos de enseñanza y aprendizaje implican la participación activa del alumno y profesor en cada una de las actividades propuestas

V - Objetivos / Resultados de Aprendizaje

1-Comprender cuál es la estructura exomorfológica y anatómica de las plantas con semilla en las fases vegetativa y

reproductiva, enfatizando la importancia agronómica en cada una de las etapas.

- 2- Desarrollar la capacidad de observación e interpretación con una actitud científica.
- 3- Valorar los beneficios que reportan la unión y la solidaridad, y por ende las tareas grupales.
- 4- Desarrollar capacidad en el manejo de las técnicas de laboratorio.
- 5- Adquirir un desarrollo progresivo de un aprendizaje autónomo

VI - Contenidos

Módulo 1: La Botánica como parte de la Biología, sus ramas y su relación con la Agronomía. Cacterísticas de los seres vivos. Niveles de organización. Clasificación de los Reinos. Nociones elementales de Taxonomía y Sistemática. Cormófitas: organización del cormo en raíz, tallo y hoja. Generalidades.: Magnoliófitas (Angiospermas) y Pinófitas (Gimnospermas). Liliópsidas (Monocotiledóneas) y Magnoliópsidas (Dicotiledóneas)

Módulo 2 Citología.

Células procarióticas y eucarióticas. Célula vegetal: concepto, forma y estructura general. Membrana plasmática (plasmalema). Citoplasma: organelas. Retículo endoplásmico, vacuolas, ribosomas, plastidios, mitocondrias y dictiosomas (aparato de Golgi). Núcleo: estructura general y función. Membrana nuclear. Nucleolo. Cromosomas. Pared celular: concepto y origen. Estructura y composición química. Organización: laminilla media, pared celular primaria y secundaria. Sustancias incrustantes y adcrustantes. Lignina: incidencia en la digestibilidad. Conexiones intercelulares: plasmodesmos, puntuaciones y perforaciones.

Módulo 3 División Celular.

División celular: mitosis y meiosis. Concepto, ocurrencia, fases. Mitosis: cariocinesis y citocinesis. Meiosis: etapa reduccional y ecuacional. Diferencias fundamentales entre ambos procesos de división. Ocurrencia de estos procesos en el cuerpo de la planta.

Módulo 4: Histología: Sistemas de Tejidos I

- a-Tejidos meristemáticos: meristemas: características citológicas. Clasificación según su localización: apicales: protodermis, meristema fundamental y procambium. Meristemas laterales: cámbium y felógeno. Meristemas intercalares.
- b-Tejidos del sistema dérmico primario -Epidemis: concepto, origen, función, localización y características citológicas. Tipos de células: epidérmicas propiamente dichas y especializadas. Epidermis de Gramíneas. Importancia ecológica y económica de conocer la dieta de los herbívoros.
- c-Tejidos del sistema fundamental: parénquima, colénquima y esclerénquima. Concepto, origen, función y características citológicas. Posición en el cuerpo de la planta. Importancia agronómica.

Módulo 5: Histología: Sistemas de Tejidos II.

Tejidos conductores. Xilema y floema

- a-Xilema: concepto, origen y función. Características citológicas de las células que lo integran. Xilema primario: concepto, origen y función. Protoxilema y metaxilema. Xilema secundario: origen. Sistema vertical y horizontal
- b-Floema: concepto, origen y función. Características citológicas de las células que lo integran. Floema primario: origen. Protofloema y metafloema. Floema secundario: origen. Sistema vertical y horizontal.
- c-Estructuras secretoras externas e internas. Concepto. Estructuras secretoras externas: tricomas glandulares, hidátodos, nectarios, osmóforos. Estructuras secretoras internas: cavidades y conductos glandulares esquizógenos y lisígenos. Laticíferos.

Módulo 6: Anatomía de la parte vegetativa de las plantas superiores.

Importancia económica de la madera en relación a su composición citológica

a-La raíz: estructura primaria: sistema dérmico, sistema fundamental y sistema vascular. Clasificación de acuerdo al número de polos de protoxilema. Estructura secundaria. Raíces de Monocotiledóneas y Dicotiledóneas. Ritidoma b-El tallo: estructura primaria: sistema dérmico, sistema fundamental, sistema vascular. Tipos de estela: Eustela y atactostela. Estructura secundaria. Peridermis: concepto, origen y función. Felógeno: felodermis y súber o corcho. Características citológicas. Lenticelas. Ritidoma. Anillo de crecimiento, albura y duramen. Leño de Angiospermas y Gimnospermas

c-La hoja: anatomía y estructura foliar de Dicotiledóneas (dorsiventral e isolateral), anatomía de las hojas de

Monocotiledóneas (Poáceas), estructura del mesófilo en relación a las vías fotosintéticas, (C3, C4 y CAM). Abscisión

Módulo 7: Las plantas y su relación con el medio. Los factores ambientales: agua , temperatura y luz, su influencia en el vegetal.

a-Ciclos de vida: plantas anuales, bienales y perennes.

Adaptaciones del cormo a los distintos ambientes. Factores ecológicos más importantes que inciden en su estructura. Homología y analogía.

b-Formas biológicas: clasificación de Raunkiaer.

Módulo 8: Exomorfología de Monocotiledóneas y Dicotiledóneas

a-La raíz: Concepto, origen y función. Morfología externa. Sistemas radicales: alorrizo y homorrizo. Raíces principales, raíces laterales y adventicias Raíces gemíferas. Asociación entre raíces de plantas superiores y organismos inferiores. al-Modificaciones: raíces napiformes y tubérculos radicales. Importancia agronómica.

b-El tallo: Concepto, origen y función. Morfología externa: segmentación. Clasificación por su consistencia y por su situación. Yema: concepto, estructura y clasificación. Ramificación y sistemas de ramificación: monopodial monopódico y simpódico. Macollos o innovaciones. Macroblastos, braquiblastos.

b1-Modificaciones: rizomas, tubérculos caulinar, cormo, estolones, espinas y zarcillos caulinares, filóclados y cladodios. Importancia agronómica

c-La hoja: Concepto, origen y función. Sucesión foliar. Morfología externa de hojas de monocotiledóneas y dicotiledóneas. Clasificación: hojas simples y compuestas. Filotaxis. Distintos tipos de prefoliación. Plantas perennifolias y caducifolias c1-Modificaciones: bulbos, espinas y zarcillos foliares. Importancia agronómica

Módulo 9: Exomorfología del Sistema reproductivo: Flor.

Concepto origen y estructura. Verticilos florales. Perianto y perigonio. Flores aclamídeas, monoclamídeas y diclamídeas. Tetracíclicas y pentacíclicas. Prefloración. Androceo. Estambres (microsporofilo): caracteres y partes del estambre. Dehiscencia. Fusión de estambres entre sí y con otras piezas florales. Estambres didínamos y tetradínamos. Gineceo. Caracteres y partes del gineceo. Tipos: unicarpelar, pluricarpelar, dialicarpelar y gamocarpelar. Carpelo (megasporofilo). Distintos tipos de placentación. Flores completas, perfectas e imperfectas. Flores epíginas, hipóginas y períginas. Fórmula y diagrama floral. Plantas monoicas, dioicas y polígamas

Módulo 10: Exomorfología del Sistema reproductivo: Inflorescencia.

Clasificación de las inflorescencias Simples y Compuestas. Racemosas o indefinidas y cimosas o definidas . Espiga, racimo, amento, capítulo, espádice, corimbo, umbela, umbela doble, racimo doble y panoja.

Módulo11: Anatomía de la parte reproductiva de las plantas superiores. Gametófitos y Fecundación.

a-Androceo: anatomía del estambre: antera joven y madura, características del filamento. Dehiscencia. Microsporogénesis: formación de las micrósporas. Estructura del grano de polen. Microgametogénesis: formación del gametófito en Angiospermas

b-Gineceo: estructura, anatomía del óvulo. Tipos de óvulos. Megasporogénesis: formación de las megásporas. Megagametogénesis en Angiospermas.

c-Polinización: Concepto y tipos de polinización. Agentes polinizadores. Morfología floral relacionada con la polinización. d-Fecundación: germinación y desarrollo del tubo polínico. Fecundación en Angiospermas y Gimnospermas.

Módulo 12: El fruto.

Concepto. Origen y estructura: epicarpio, mesocarpio y endocarpio. Caracteres tomados en cuenta para la clasificación de frutos: frutos simples, agregados y compuestos. Histología de la pared del pericarpio: frutos secos y carnosos. Frutos dehiscentes e indehiscentes. Frutos esquizocárpicos. Dispersión. Caracterización de frutos de familias de interés agronómico.

Módulo 13: Semilla y plántula.

a-Semilla: concepto, origen y estructura. Distintos tipos: endospermadas o albuminadas, exalbuminadas, perispermadas y protálicas.

b-Plántula: Germinación: concepto. Tipos de germinación: epígea e hipógea.

Descripciones de plántulas de cultivos y malezas.

Módulo 14: Ciclos Biológicos.

Generalidades. Reproducción sexual y asexual. Fases nucleares y generaciones. Estudio comparativo de los ciclos biológicos en Angiospermas.

VII - Plan de Trabajos Prácticos

VII - Plan de Trabajos Prácticos

T.P Nº 1: Microscopía y técnicas de trabajo. Citología y Sistema Dérmico.

T.P N°2: Sistemas de Tejidos: Sistema Fundamental y Sistema Vascular.

T.P N°3: Raíz: estructura primaria y estructura secundaria.

T.P N°4: Tallo: estructura primaria y estructura secundaria.

T.P N°5: Hoja: anatomía.

T.P Nº6: Exomorfología de las plantas superiores: raíz, tallo y hoja de Liliópsidas (Monocotiledóneas).

T.P N°7: Exomorfología de las plantas superiores: raíz, tallo y hoja de Magnoliópsidas (Dicotiledóneas).

T.P N°8: Flor. Inflorescencia.

T.P N°9: Fruto.

T.P N°10: Semilla y Plántula.

Trabajo Práctico Nº 1: Microscopía y técnicas de trabajo. Citología y Sistema Dérmico. (Modalidad: laboratorio). Objetivos:

- -Identificar las partes que componen un microscopio óptico, adquirir destreza en el manejo del mismo y confeccionar preparados temporarios.
- -Observar la estructura básica de la célula vegetal y caracterizar las células de la epidermis, relacionándolas con la función que cumplen.

Importancia: El conocimiento de la célula vegetal y la estructura y función de los tejidos, sirve como base para el manejo, producción, adaptabilidad y como reconocimiento de las especies.

Trabajo Práctico N°2: Sistemas de Tejidos: Sistema Fundamental y Sistema Vascular. (Modalidad: laboratorio). Objetivos:

- Observar la distribución de los tejidos en la planta y caracterizar las células del parénquima, colénquima, esclerénquima, xilema y floema, relacionándolas con la función que cumplen.

Importancia:

- El conocimiento de la estructura y función de los tejidos, sirve como base para el manejo, producción, adaptabilidad y como reconocimiento de las especies.

Trabajo Práctico N°3. Raíz: Estructura Primaria y Estructura Secundaria. (Modalidad: laboratorio).

Objetivos:

- Analizar la estructura primaria y secundaria de la raíz, reconociendo la distribución de los tejidos y la función de los mismos.
- Estudiar la anatomía relacionándola al grupo de plantas al que pertenecen.
- Analizar comparativamente la estructura primaria y secundaria de la raíz, enfatizando la importancia de la diferenciación de los tejidos vasculares primarios, clasificación de las raíces de acuerdo al número de polos de protoxilema y los caracteres de leño utilizados en la identificación.

Importancia:

La anatomía de la raíz se utiliza para la identificación de grupos vegetales, la determinación de adaptaciones, entre otras.

Trabajo Práctico Nº4. Tallo: Estructura Primaria y Estructura Secundaria. (Modalidad: laboratorio).

Objetivos:

- Analizar la estructura primaria y secundaria del tallo, reconociendo la distribución de los tejidos y la función de los mismos.
- Estudiar la anatomía relacionándola al grupo de plantas al que pertenecen.
- Analizar comparativamente la estructura primaria y secundaria del tallo, enfatizando la diferenciación de los tejidos vasculares primarios, tipo de estela y los caracteres de leño utilizados en la identificación de las maderas.

Importancia:

La anatomía del tallo se utiliza para la clasificación de grupos vegetales, adaptaciones, para la identificación de maderas entre otras.

Trabajo Práctico N°5. Hoja: anatomía. (Modalidad: laboratorio).

Objetivos:

- Reconocer la distribución de los tejidos en la anatomía foliar.
- Relacionar las variaciones que se presentan en la anatomía, con el hábitat y con el mecanismo fotosintético.

Importancia

La anatomía foliar es útil para observar las adaptaciones de las especies al medio y se relaciona con la productividad de las especies.

Trabajo Práctico Nº6 y T.P Nº 7: Exomorfología de las Plantas Superiores: Raíz, Tallo y Hoja de Liliópsidas (Monocotiledóneas) y Magnoliópsidas (Dicotiledóneas). (Modalidad: en campo experimental de Ing. Agronómica y laboratorio).

Objetivos:

- Reconocer la estructura vegetativa externa de plantas herbáceas y leñosas.
- Analizar las modificaciones que se pueden presentar como respuesta a diferentes condiciones del medio ambiente (agua, luz y temperatura) y al ciclo de vida característico de cada especie.

Importancia:

Las características exomorfológicas se utilizan para:

- La clasificación taxonómica de los vegetales (Botánica Sistemática).
- El manejo de especies de importancia agronómica (Forrajicultura, Cereales, Horticultura, Fruticultura, Pastizales Naturales, etc.).
- Comprender las adaptaciones que presentan las plantas frente a diferentes condiciones del medio ambiente (Ecología).

Trabajo Práctico N°8: Flor, Inflorescencia.

(Modalidad: laboratorio).

Objetivos:

- Analizar la estructura exomorfológica de la flor.
- Enfatizar la importancia de la posición del ovario y del tipo de placentación, caracteres que se relacionan con el tipo de fruto que originan.
- Analizar los sistemas de ramificación que presentan las flores: inflorescencias.

Importancia:

El estudio de la estructura floral y de las inflorescencias se utilizan en:

- La clasificación taxonómica de los vegetales (Botánica Sistemática)
- En el estudio de la biología floral de las especies.
- En Mejoramiento Genético Vegetal.

Trabajo Práctico Nº9: Fruto. (Modalidad: laboratorio).

Objetivos:

- Reconocer las características de los distintos tipos de fruto, clasificándolos con la ayuda de la clave dicotómica.
- Relacionar las características del fruto con la estructura de la flor que lo originó y con el tipo de dispersión que presentan. Importancia:

El estudio del fruto está relacionado con la identificación de las especies, la evolución, tipos de dispersión, etc.

Trabajo Práctico N°10. Semilla y Plántula. (Modalidad: laboratorio).

Objetivos:

- Reconocer la estructura de diferentes tipos de semilla, clasificándolas según la localización de la sustancia de reserva.
- Relacionar la morfología de la semilla con el modo de dispersión que presenta.
- Reconocer la estructura de la plántula teniendo en cuenta el tipo de germinación y enfatizar la importancia del reconocimiento de las especies al estado de plántula.

Importancia:

La morfología de la semilla se relaciona con la identificación de las especies, el mejoramiento vegetal, la dispersión, etc.

El reconocimiento al estado de plántula es importante para implementar técnicas de control, manejo, etc.

AULA TALLER: Uno de los objetivos principales del Aula Taller es que los alumnos que han cursado la asignatura Morfología Vegetal puedan integrar los conceptos adquiridos a lo largo de la cursada.

Aplicar la metodología de trabajo para el análisis exomorfológico de especies vegetales.

Fomentar la capacidad de observación y discernimiento

Aprender a seguir y aplicar los pasos del Método científico

Redactar un informe completo de lo analizado

Defender oralmente el trabajo

Se formarán grupos de 5 o 6 alumnos, se elegirá una especie vegetal que analizarán exomorfológicamente siguiendo la metodología aplicada en los trabajos prácticos.

En base a lo analizado, se redactará un informe final completo siguiendo

los pasos del método científico

VIII - Regimen de Aprobación

La asignatura Morfología Vegetal comprende clases: teóricas y prácticas.

- 1- Régimen de aprobación por examen final:
- 1.1-Para alumnos regulares:

Es obligatoria la asistencia al 90% de los Trabajos Prácticos estipulados por la asignatura; con una tolerancia máxima de asistencia de quince minutos después del horario de comienzo del trabajo práctico, en casos debidamente justificados. Será obligatorio presentar en cada trabajo práctico la guía de Trabajos Prácticos y el material solicitado por el docente sin el cual no podrá realizar el T.P. Al finalizar el cuatrimestre la carpeta de trabajos prácticos deberá estar aprobada. Deberá aprobar el Aula taller con defensa del trabajo en forma oral y presentación escrita

Aprobar con un puntaje mínimo de 6 (seis) l sobre 10 los tres exámenes parciales que se exigirán durante el dictado del curso. En caso de no aprobar con la calificación citada, tendrá derecho a una recuperación por cada examen parcial reprobado o ausencia del mismo. Los alumnos que trabajen y las otras categorías de regímenes especiales se normarán por las ordenanzas C.S.Nº: 26/97 y 15/00.

Para obtener la condición de alumno regular el alumno deberá cumplimentar lo anteriormente estipulado, de no cumplir con la totalidad de lo expresado en el régimen de regularidad quedará en condición de alumno libre.

Los alumnos que hayan cumplido con los requisitos de regularización establecidos en el reglamento, mantendrán su condición de alumno regular por el término de dos años y nueve meses a partir de la finalización de su cursado. Los alumnos que no logren aprobar el curso en cuatro exámenes finales, perderán la condición de alumno regular en el mismo

1.2-Para alumnos libres: el alumno que se presente en condición de alumno libre, deberá avisar en la asignatura 72hs. hábiles antes de la fecha del examen final. Deberá aprobar con un puntaje mínimo de 6 (seis) sobre 10 un examen de laboratorio que incluya los contenidos de los trabajos prácticos desarrollados durante el año.

Aprobado el examen práctico, el alumno será evaluado con los contenidos teóricos del programa analítico.

El examen final se aprobará con la exposición de un tema elegido por el alumno y con preguntas integradoras del programa analítico. (Según Ord. CD Nº: 017/01-Ord C.S. 13/03

IX - Bibliografía Básica

- [1] BIANCO, C;KRAUS, T y NUÑEZ, C.2002. Botánica Agrícola. UNRC.Fac. de Agronomía y Veterinaria
- [2] COCUCCI, A y A. HUNZIKER. 1979. Los ciclos biológicos en el Reino Vegetal. Córdoba
- [3] COCUCCI, A. 1969. El proceso sexual en Angiospermas. Kurtziana 5: 407- 423, f. 1-6.
- [4] CRONQUIST, A. 1987. BOTANICA BASICA. México, Cecsa. 655pp [6] CURTIS, H. 1986. BIOLOGÍA. 4° ed. Buenos Aires, Panamericana. 1255 pp.
- [5] CUTLER, D.F. 1987. ANATOMIA VEGETAL APLICADA. Ed. Biblioteca.
- [6] DIMITRI, M y E. ORFILA. 1985. TRATADO DE MORFOLOGIA y SISTEMATICA
- [7] VEGETAL. Ed. Acme. Argentina. 489 pp.
- [8] ESAU, K. 1971. ANATOMÍA VEGETAL. Barcelona, Omega. 729 pp.
- [9] ----- 1987. ANATOMIA DE LAS PLANTAS CON SEMILLAS. Ed. Hemisferio Sur Argentina. 512 pp.
- [10] FHAN, A. 1982. ANATOMIA VEGETAL. Ed. Pirámide. Madrid.
- [11] FONT QUER. 1979. DICCIONARIO DE BOTANICA. Ed. Labor. S.A.
- [12] JENSEN-SALISBURY. 1988. BOTANICA. Ed. Mc Graw-Hill. México.
- [13] KROMMMENHOEK, W. et al.. 1985. ATLAS DE HISTOLOGÍA VEGETAL. Editorial Marban, Madrid
- [14] ROST, T et al .1985. BOTANICA: INTRODUCCION A LA BIOLOGIA VEGETAL. EdLimusa. México.
- [15] RUTISHAUSER, A. 1982. INTRODUCCION A LA EMBRIOLOGIA y BIOLOGIA DE LA REPRODUCCION DE

LAS ANGIOSPERMAS. Ed. Hemisferio Sur.

[16] SINNOT, E. y K. WILSON. 1965. BOTANICA: PRINCIPIOS y PROBLEMAS. Ed Continental. México.

[17] STRASBURGER, E. et al. 1974. TRATADO DE BOTANICA. 6°ed. Marín. Barcelona.

[18] VALLA, J. 1983. BOTANICA. MORFOLOGIA DE LAS PLANTAS SUPERIORES. Ed Hemisferio Sur. Argentina.

X - Bibliografia Complementaria

[1] Material didáctico de las clases teóricas en power point(Aula Virtual claroline)

[2] Apuntes de la Asignatura

XI - Resumen de Objetivos

- 1- Comprender cuál es la estructura exomorfológica y anatómica de las plantas con semilla en las fases vegetativa y reproductiva, enfatizando la importancia agronómica en cada una de las etapas.
- 2- Desarrollar la capacidad de observación e interpretación con una actitud científica.
- 3- Valorar los beneficios que reportan la unión y la solidaridad, y por ende las tareas grupales.
- 4- Desarrollar capacidad en el manejo de las técnicas de laboratorio.
- 5- Adquirir un desarrollo progresivo de un aprendizaje autónomo.

XII - Resumen del Programa

Módulo 1: Aspectos generales de la Biología. Botánica y su aplicación en Agronomía.

Características de los seres vivos. Niveles de organización.

Módulo 2: Morfología externa: raíz, tallo y hoja.

Módulo 3: Modificaciones del cormo:raiz, tallo y hoja

Módulo 4: Sistema reproductivo: Flor.

Módulo 5: Sistema reproductivo: Inflorescencia.

Módulo 6: El fruto.

Módulo 7: Citología.

Módulo 8: División Celular.

Módulo 9: Histología: Tejidos meristemáticos y sistema fundamental.

Módulo 10: Histología: Tejidos conductores y secretores.

Módulo 11: Anatomía de las plantas superiores.

Módulo 12: Anatomía de los verticilos florales. Gametófitos y Fecundación.

Módulo 13: Semilla y plántula.

Módulo 14: Ciclos Biológicos.

XIII - Imprevistos

La secuencia en el dictado de los teóricos y de los trabajos prácticos se puede modificar dependiendo del material fresco utilizado en el desarrollo de los mismos, dependiendo de las condiciones climáticas.

XIV - Otros		

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		