

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Electrónica

(Programa del año 2013) (Programa en trámite de aprobación) (Presentado el 09/05/2013 19:50:22)

I - Oferta Académica

Materia	Carrera	Plan Año	Período
Circuitos Digitales	Ingeniería Electrónica	702-1 2013	1° cuatrimestre
		7/07	

II - Equipo Docente

Docente	Función	Cargo	Dedicación
AOSTRI, CARLOS AMADO	Prof. Responsable	P.Adj Semi	20 Hs
CATUOGNO, CARLOS GUSTAVO	Responsable de Práctico	JTP Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
0 Hs	1 Hs	2 Hs	2 Hs	5 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
14/03/2013	19/06/2013	15	75

IV - Fundamentación

El Curso de Circuitos Digitales se fundamenta en la necesidad que el alumno de una carrera de grado con orientación en electrónica debe tener el conocimiento y la práctica básica en Circuitos Digitales básicos para desenvolverse en el mundo tecnológico que nos rodea y que crece sin cesar en esa dirección, además este curso es la base para el posterior curso de Microprocesadores y Computadoras Digitales.

V - Objetivos / Resultados de Aprendizaje

Objetivos Generales

Formar al futuro Ingeniero para el análisis y la síntesis de los Circuitos Digitales.

Objetivos Particulares

Proveer a los estudiantes de los conocimientos necesarios para

entender el funcionamiento de los procesadores digitales secuenciales programables

VI - Contenidos

Programa de la Materia

Unidad 1

Sistemas de numeración y códigos

Generalidades. Representación de los números. Sistemas de

Numeración. Sistemas binario, octal, hexadecimal. Códigos: binarios, decimales codificados en binario, continuos y ciclícos,

alfanumèricos, detectores de error, correctores de error.

Unidad 2

Algebra de Boole

Definición y postulados. Teoremas del Algebra de Boole. Funciónes del Algebra de Boole. Tabla de verdad de una Función lógica. Funciones importantes: O-exclusiva, equivalencia.

Unidad 3

Circuitos Digitales Combinacionales

Sistemas combinacionales. Generalidades. Simplificación de las

funciones lògicas. mètodos tabulares de Karnaugh y Veitch. mètodo

numèrico de Quin- McCluskey. Funciones incompletas. Multifunciones. Realización de las funciones lògicas. Fenòmenos aleatorios. Bloques funcionales combinatorios, Decodíficadores, Demultiplexores. Codificadores. Multiplexores.

Unidad 4

Circuitos Digitales Combinacionales

Sistemas combinacionales programables no universales. Universales. Matrices lògicas programables.

Unidad 5

Aritmética en los còdigos binarios

Suma aritmètica binaria. Realización de sumadores y generadores de acarreo. Resta binaria. Representación de los números negativos. Unidades Aritméticas y lógicas. Formato de representación de los números fraccionarios.

Unidad 6

Tecnología de los Circuitos digitales

Tecnología de realización de los Circuitos digitales. El inversor con elementos discretos bipolares y unipolares como bloque bàsico constitutivo de Biestables, monoestables y astables. Realización de los circuitos integrados a partir de los bloques básicos. Discusión de las distintas familias. Características de velocidad y cargabilidad

Unidad 7

Sistemas secuenciales

Definición. Sistemas secuenciales asincronos. Síntesis. Comparación de los bloques básicos activados por nivel y activados por flancos. El biestable como célula básica de los circuitos almacenadores de información.

Unidad 8

Sistemas secuenciales

Sistemas secuenciales sincronos. Introducción. Síntesis de contadores y registros de distinto tipos.

Unidad 9.

Procesadores digitales secuenciales programables

Memorias. Banco de registros como unidades de memoria. Capacidad.

Direccionamientos. Acceso. Memorias RAM. Variantes de memorias

ROM.Convertidores Analógicos/Digitales y Digitales/Analógicos.

Unidad 10

La arquitectura de Von Neuman. Descripción de una máquina elemental. La "Blue" El conjunto de instrucciones. La unidad de control. La unidad aritmética y lògica. Descripción del ciclo de busqueda y del ciclo de ejecución. Programas para la "Blue".

VII - Plan de Trabajos Prácticos

PRACTICO 1- Sistemas y Codigos de Numeracion. (Practico de Aula)

PRACTICO 2- Algebra de Boole Y Sistemas Combinacionales (Practico de Aula) Laboratorio: Minimizacion e implementacion en protoboard de funcion lógica.

PRACTICO 3- Sistemas Combinacionales y Aritmetica Binaria (Practico de Aula) Laboratorio: Implementar en protoboard sumador total.

PRACTICO 4- Sistemas Secuanciales (Practico de Aula) Laboratorio 1: Implementar en protoboard distintos tipos de generadores de clock. Laboratorio 2: Implementar en protoboard contador de modulo 5.

PRACTICO 5- Familias Logicas - Interfases (Practico de Aula) Laboratorio 1: Implementar en protoboard llave logica.

Laboratorio 2: Implementar en protoboard interfase TTL a CMOS. Laboratorio 3: Implementar en protoboard driver de potencia. Laboratorio 4: Implementar en protoboard driver para motor paso a paso.

PRACTICO 6- Convertidores A/D y D/A (Practico de Aula) Laboratorio: Implementar en protoboard un conversor D/A.

PRACTICO 7- Memorias (Practico de Aula) Laboratorio: Conectar en protoboard una memoria RAM y leer y grabar datos en la misma a traves de llaves.

PRACTICO 8- BLUE (Parcticos de Aula) Laboratorio: Programas de aplicacion con simulador en PC.

VIII - Regimen de Aprobación

REGULARIZACIÓN DE LA MATERIA

Los alumnos deberán aprobar la totalidad de los Trabajos de Laboratorio y la Carpeta de Trabajos Prácticos, que incluye los Informes de Prácticos de Laboratorio. Tienen tres recuperaciones en total, no pudiendo recuperar un practico más de una vez. Para la regularización de la asignatura, los alumnos inscriptos deberán aprobar:

- a) 100% de Trabajos Prácticos.
- b) Régimen de asistencia no menor al 80% de las clases prácticas.
- c) Dos parciales teórico-prácticos, o las correspondientes recuperaciones estipuladas por Reglamentación.

EXAMEN FINAL

Los alumnos regulares serán evaluados en la teoría de la materia.

Los alumnos libres serán evaluados en la teoría luego de aprobar el Plan de Trabajos Prácticos.

IX - Bibliografía Básica

- [1] Electronica aplicada a las altas frecuencias, Gamboa Zuñiga, Mariano, 01 ed., 2001.
- [2] Organización de computadoras. Un enfoque estructurado. Autor: Tanenbaum, Andrew. PRENTICE HALL, 2000.
- [3] Sistemas Electronicos Digitales Autor: Enrique Mandado MARCOMBO, 1992.
- [4] Electronica Digital Integrada Autor: Herbert Taub/Donald Schilling MARCOMBO, 1999.
- [5] Electronica integrada: Circuitos y sistemas analogicos y digitales, Millman, Jacob, 09 ed., 1991.
- [6] Electronica digital practica: Tecnologia y sistemas, Hermosa Donate, Antonio, 01 ed., 1995.
- [7] Apuntes de la Cátedra, 2011.

X - Bibliografia Complementaria

- [1] Sistemas Digitales. Autor:Tocci Ronald, 03 ed., 1992.
- [2] Tecnicas Digitales y Microelectronica. Autor: Perez Julio, 1985.
- [3] Digital Design and Modeling with VHDL and Synthesis. Autor: Chang K

XI - Resumen de Objetivos

Objetivos Generales

Formar al futuro Ingeniero para el análisis y la síntesis de los Circuitos Digitales.

Objetivos Particulares

Proveer a los estudiantes de los conocimientos necesarios para

entender el funcionamiento de los procesadores digitales secuenciales programables

XII - Resumen del Programa

Programa de la Materia

Unidad 1

Sistemas de numeración y códigos

Unidad 2

Algebra de Boole

Unidad 3

Circuitos Digitales Combinacionales

Sistemas combinacionales. Generalidades. Simplificación de las

funciones lògicas.

Unidad 4

Circuitos Digitales Combinacionales

Sistemas combinacionales programables no universales. Universales.

Matrices lògicas programables.

Aritmética en los còdigos bi	narios
Unidad 6	
Tecnología de los Circuitos	digitales
Unidad 7	
Sistemas secuenciales	
Definición. Sistemas secuen	ciales asincronos.
Unidad 8	
Sistemas secuenciales	
Sistemas secuenciales sincre	onos.
Unidad 9.	
Procesadores digitales secue	nciales programables
Unidad 10	
La arquitectura de Von Neu	man. Descripción de una máquina
elemental.	
XIV - Otros	LEVACIÓN y APROBACIÓN DE ESTE PROGRAMA
	Profesor Responsable
	Trotesor Responsable
Firma:	
Aclaración:	
Fecha:	
	I

Unidad 5