

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ciencias Básicas Area: Matemática

(Programa del año 2012) (Programa en trámite de aprobación) (Presentado el 13/06/2012 10:16:18)

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
Análisis Matemático II	Ingeniería Electromecánica	007/0	2012	1° cuatrimestre
Análisis Matemático II	Ing. Química	6/97- 2/03	2012	1° cuatrimestre
Análisis Matemático II	Ingeniería Industrial	004/0 4	2012	1° cuatrimestre
Análisis Matemático II	Ing. en Alimentos	2401- 7/08	2012	1° cuatrimestre
Análisis Matemático II	Ingeniería Electrónica		2012	1° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
ALANIZ, SARA AIDA	Prof. Responsable	P.Asoc Exc	40 Hs
ARES, OSCAR ENRIQUE	Prof. Colaborador	P.Adj Exc	40 Hs
LEPORATI, JORGE LEANDRO	Responsable de Práctico	JTP Exc	40 Hs
AGUILERA, LIA MARICEL	Auxiliar de Práctico	A.2da Simp	10 Hs
SIMUNOVICH, ROBERTO JAVIER	Auxiliar de Práctico	A.2da Simp	10 Hs
TONELLI, FRANCO	Auxiliar de Práctico	A.1ra Semi	20 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	4 Hs	3 Hs	1 Hs	8 Hs

Tipificación	Periodo	
B - Teoria con prácticas de aula y laboratorio	1° Cuatrimestre	

Duración				
	Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
	14/03/2012	22/06/2012	15	120

IV - Fundamentación

En el curso Análisis Matemático 2 y/o Análisis Matemático II se utiliza como conocimientos previos, los contenidos desarrollados en Análisis Matemático 1 y/o Análisis Matemático I, Algebra 1 y/o Algebra I, Algebra 2 y/o Algebra II, con apoyo de conceptos geométricos y fenómenos físicos para su aplicación. En este curso se trabaja con campos escalares y vectoriales de varias variables, su análisis permite además de una formación en la metodología del análisis de conceptos y sus aplicaciones, ubicar al alumno en una realidad influenciada por diversos factores, de los cuales es necesario conocer para poder posteriormente sugerir medios que permitan modificar los efectos si ello es adecuado. Se trabaja además con modelos matemáticos sencillos expresados mediante ecuaciones diferenciales ordinarias o sistemas de ecuaciones diferenciales ordinarias. Estos temas últimos van a permitir que los alumnos puedan trabajar en otros cursos con estos conocimientos

V - Objetivos / Resultados de Aprendizaje

- Lograr que los alumnos adquieran los conocimientos básicos relativos a funciones reales y vectoriales dependientes de varias variables.
- Lograr que los alumnos adquieran la capacidad de interpretar los problemas concretos.
- Lograr que los alumnos aprendan a relacionar temas de cursos afines.
- Lograr que los alumnos aprendan a utilizar los conceptos adquiridos en problemas concretos.

VI - Contenidos

Unidad 1.- ,FUNCIONES REALES Y VECTORIALES, LIMITE Y CONTINUIDAD.

Conjunto abierto, cerrado y acotado: definiciones y ejemplos. Intervalo y entorno. Función vectorial de una variable. Curvas en el espacio. La ecuación de la recta: forma vectorial, paramétrica y simétrica. Funciones reales de varias variables. Dominio de definición. Gráfica de funciones reales y vectoriales de varias variables. Superficie plana: ecuación general, ecuación vectorial, ecuaciones paramétricas. Límite y continuidad de funciones vectoriales de una variable. Diferenciación de vectores. Longitud del arco de curva y su derivada. Geometría de una curva alabeada. Fórmula de Frenet. Límite de funciones reales de dos o mas variables. Límites sucesivos. Continuidad.

Unidad 2.- DERIVADAS PARCIALES, COORDENADAS CURVILINEAS.

Incremento total y parcial de una función de dos o más variables. Interpretación geométrica de las derivadas parciales de una función de dos variables. Incremento total y diferencial total. Aplicaciones de la diferencial total a cálculos aproximados y a la evaluación de error en cálculos numéricos. Derivada de una función compuesta. Derivada total. Derivada de una función implícita. Derivadas parciales de orden superior a uno. Derivadas parciales de funciones vectoriales de más de una variable. Coordenadas cilíndricas. Coordenadas esféricas. Coordenadas curvilíneas. Base natural cilíndrica. Base natural esférica.

Unidad 3.- CAMPOS ESCALARES Y VECTORIALES.

Campos escalares. El gradiente de una función de punto. Propiedades geométricas del gradiente. Superficie de nivel y líneas de gradiente. Derivada direccional. Plano tangente a una superficie. Teorema del valos medio. Fórmula de Taylor. Campos vectoriales. Divergencia de un vector. Interpretación física de la divergencia. Rotor. Campos irrotacionales. La función potencial. Aplicaciones. Extremos de un campo escalar. Extremos condicionados.

Unidad 4.- INTEGRALES MÚLTIPLES, DE LINEA Y DE SUPERFICIE.

Integrales dobles. Cálculo de la Integral doble. Propiedades. Integral doble en coordenadas polares. Aplicaciones físicas. Integrales triples. Cambio de sistema de referencia. Aplicaciones físicas de las integrales triples. Integral curvilines. Cálculo de la integral curvilínea. Fórmula de Green. Condiciones para que la integral curvilínea no dependa del camino de integración. Integral de superficie. Teorema de Stokes. Teorema de la divergencia. Integral de volumen.

Unidad 5.- ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN.

Ecuaciones diferenciales ordinarias de primer orden: conceptos básicos. Ecuaciones diferenciales a variables separadas y separables. Ecuaciones homogeneas de primer orden. Ecuaciones diferenciales lineales. Circuitos eléctricos. Ecuaciones diferenciales exaxtas o totales. Factor integrante. Família de curvas. Trayectorias ortogonales. Aplicaciones.

Unidad 6.- ECUACIONES DIFERENCIALES ORDINARIAS DE ORDEN SUPERIOR A UNO. SISTEMA EDO.

Ecuaciones diferenciales de orden superior a uno. Ecuaciones lineales homogéneas de segundo orden. Solución general. Sistema fundamental. Ecuaciones diferenciales lineales de segundo orden a coeficientes constantes. Existencia y unicidad de las soluciones. Ecuaciones homogéneas de orden arbitrario con coeficientes constantes. Ecuaciones lineales no homogéneas. Método de los coeficientes indeterminados. Sistema de ecuaciones diferenciales lineales con coeficientes constantes. Nociones sobre la teoría de la estabilidad. Soluciones aproximadas de las ecuaciones diferenciales: Distintos métodos de resolución analítica y numérica

VII - Plan de Trabajos Prácticos

Los trabajos prácticos consistirán en resolver ejercicios y problemas de aplicación de los conceptos tratados en el curso. Se utilizarán como herramientas de trabajo: calculadoras científicas y software. El software con el cual se trabajará es el Maple.

VIII - Regimen de Aprobación

Regimen de Alumnos Regulares:

- El Alumno para alcanzar la regularidad en la materia deberá ajustarse a los siguientes requisitos.
- 1.- Deberá:
- a) Asistir regularmente a no menos del 70 % de las clases teórico-prácticas del curso.
- b) Aprobar el 70% de los trabajos prácticos, para esto deberá demostrar poseer los conocimientos teóricos correspondientes a la práctica.
- 2.- Se tomarán 2 (dos) evaluaciones parciales que versarán sobre los temas desarrollados y en fecha aproximada segunda quincena de septiembre y primera quincena de noviembre. Además el alumno deberá en cada evaluación parcial alcanzar un puntaje no inferior al 60%.
- 3.- Los alumnos que no alcancen el 70% de los trabajos prácticos aprobados, antes del parcial, podrán recuperar los mismos en fecha previa o durante la evaluación.
- 4.- Cada evaluación parcial contará con su recuperacion dentro de un termino de aproximadamente de una semana.
- 5.- Aquellos alumnos que no hayan aprobado una o ninguna de las instancias dadas para cada parcial, tendran derecho a una recuperación de o de los parciales que adeuda.
- 6.-A los alumnos comprendidos en el Art. 24, inc. d, de la Ord. C. S. 13/03, y acrediten en tiempo y forma esta situación tendrán derecho a otra instancia de recuperación cualquiera sea la condición con respecto al número de parciales aprobados. Regimen de aprobación de la asignatura:

El requisito de aprobación de la asignatura para los alumnos que regularizaren la misma implica aprobar un examen final. Este examen es oral y en el mismo se desarrollarán los conceptos teóricos y su relaciones.

Régimen de alumnos libres

El alumno que se presenten a rendir examen en condición de libre deberá aprobar previo al examen oral correspondiente a un alumno regular, una evaluación escrita eliminatoria de caracter teórico-práctica. Este examen escrito se considerará aprobado cuando se responda satisfactoriamente a no menos del 75%.

IX - Bibliografía Básica

- [1] EDWARDS, CHARLES HENRY; PENNEY, DAVID E. EDICION / Ecuaciones diferenciales. México: Pearson Educación, 2008.
- [2] ZILL, DENNOS G. Ecuaciones diferenciales con aplicaciones de modelado. ed. México Thompson Internacional, 2007
- [3] PURCELL VARBERG RIGDON Cálculo- Mexico Pearson Educación de Mexico. ed. 2007.
- [4] GEORGE, THOMAS. Cálculo varias variables. México: Pearson Educación, 2006.
- [5] LARSON HOSTETLER EDWARDS- Cálculo-Volumén 2 -Editorial Mc Graw Hill.ed. 2006.
- [6] ROBERT SMITH, ROLAND MINTON Cálculo II Mexico McGraw-Hill Interamericana Editores-Edición: 02 ed. 2005.
- [7] WREDE, ROBERT C., SPIEGEL, MURRIA R. Cálculo avanzado. Madrid : McGraw-Hill, 2004
- [8] JERROLD MARSDEN, ANTHONY TROMBA Cálculo vectorial México Editorial Madrid Pearson Educacion-Edición:05 ed. 2004.
- [9] STEWART, JAMES. Cálculo multivariable. México: Thompson Internacional, 2002.
- [10] EDWARDS H, PENNY D.- Ecuaciones diferenciales Mexico Pearson Educación de Mexico. ed. 2001
- [11] FRANK AYRES, Jr Ecuaciones diferenciales Mexico McGraw-Hill Interamericana Editores- Edición: 01 ed. 2001.
- [12] LOUIS LEITHOLD El calculo con geometría analítica Mexico Oxford University Press. ed. 1999
- [13] DENNIS G. ZILL Ecuaciones diferenciales Mexico Grupo Iberoamerica ed. 1998
- [14] DENNIS G. ZILL Cálculo con geometría analítica México Grupo Editorial Iberoamerica-Edición: 01 ed 1996.
- [15] PURCELL VARBERG. Cálculo con geometría analítica Mexico Prentice Hall Hispanoamericana ed. 1993.
- [16] HWEI HSU Análisis vectorial Wilmungton Addison Wesley Iberoaméricana-Edición: 01 ed. 1987.

X - Bibliografia Complementaria

- [1] F. MERRIT Matemática aplicada a la ingeniería Editorial Barcelona Labor.-Edición: 01 ed. 1976.
- [2] L. SANTALO Vectores y tensores con sus aplicaciones Buenos Aires EUDEBA- Edición: 14 ed. 1993.
- [3] V. FRAILE Ecuaciones diferenciales Madrid Editorial Tebar Flores- Edición: 02 ed. 1991.
- [4] CESAR PEREZ LOPEZ Calculo simbolico y numerico con Mathematica Madrid Ra-Ma. ed. 1995

[5] N. PISKUNOV - Cálculo diferencial e integral- Tomo II- Moscú Editorial Moscu Mir.ed. 1991. [6] ERWIN KREYSZIG - Matemática avanzada para la ingeniería - Editorial Limusa.-Noriega-ed.2004.

XI - Resumen de Objetivos

Lograr que los alumnos comprendan y aprendan los conceptos básicos del análisis real en varias variables y el análisis vectorial.

Lograr que el alumno valore la utilidad del planteo y solución de ecuaciones diferenciales o sistema de ecuaciones diferenciales para la resolución de modelos matemáticos ingenieriles y aprenda los distintos métodos para resolución del problema

XII - Resumen del Programa

Análisis real para funciones de dos o más variables. Campos escalares y vectoriales. Análisis vectorial. Coordenadas generalizadas. Cálculo vectorial: gradiente, divergencia, rotor, función potencial. Teorema de Stokes, de la divergencia y asociados. Integrales múltiples, curvilíneas y de superficie. Ecuaciones diferenciales ordinarias. Sistema de ecuaciones diferenciales ordinarias. Método de resolución analíticos y numéricos.

XIII - Imprevistos

XIV - Otros

Ante la ocurrencia de alguna situación imprevista, que dificulte o interrumpa el normal dictado de la materia, se procederá a implementar las medidas que resulten más convenientes, a fin de subsanar en la medida de lo posible, tales inconvenientes y lograr que los alumnos rindan satisfactoriamente todo el programa de la asignatura.

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA			
	Profesor Responsable		
Firma:			
Aclaración:			
Fecha:			