

Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Bioquímica y Cs Biologicas

(Programa del año 2011) (Programa en trámite de aprobación) (Presentado el 08/08/2011 10:59:59)

Area: Biologia Molecular

I - Oferta Académica

Materia	Carrera	Plan	Año	Período
GENETICA	LIC. EN BIOLOGIA MOLECULAR	11/06	2011	2° cuatrimestre

II - Equipo Docente

Docente	Función	Cargo	Dedicación
SIEWERT, SUSANA ELFRIDA	Prof. Responsable	P.Adj Exc	40 Hs
GONZALEZ, IRMA INES	Responsable de Práctico	JTP Exc	40 Hs

III - Características del Curso

Credito Horario Semanal				
Teórico/Práctico	Teóricas	Prácticas de Aula	Práct. de lab/ camp/ Resid/ PIP, etc.	Total
Hs	6 Hs	Hs	3 Hs	9 Hs

Tipificación	Periodo
B - Teoria con prácticas de aula y laboratorio	2° Cuatrimestre

Duración			
Desde	Hasta	Cantidad de Semanas	Cantidad de Horas
08/08/2011	18/11/2011	14	120

IV - Fundamentación

La genética se ha convertido en base indispensable para casi cualquier tipo de investigación en biología y medicina. Esta privilegiada situación es fruto de la poderosa combinación entre los enfoques clásico y molecular. Cada uno de ellos tiene virtudes propias. La genética clásica no tiene rival en su habilidad para adentrarse en territorios biológicos todavía inexplorados. La genética molecular es asimismo inigualable en su capacidad para desentrañar los mecanismos celulares. Sería imposible enseñar una sin la otra y cada una recibe la atención debida en el manejo de este Programa, los alumnos de la Licenciatura de Biología Molecular, obtendrán los conocimientos básicos para poder enfrentar las asignaturas de la Carrera que necesitan de este sustento, dado que es la última Asignatura de su Ciclo Básico de formación y por ende el cimiento sobre el cual trabajarán, en el marco de la Curricula: Biología Molecular, Genética Molecular, Ingeniería Genética y Biotecnología. Por lo tanto, armados de ambos enfoques, los estudiantes se encontrarán capacitados para alcanzar una visión integrada de los principios genéticos.

El Curso está organizado en base a tres Unidades, éstas constituyen las ideas centrales del desarrollo del Programa:

Organización del material hereditario.

Expresión y regulación del material genético.

Evolución del material hereditario.

En cuanto a la justificación de los trabajos prácticos, debemos señalar que estos tienen por finalidad: (1) familiarizar al alumno con las técnicas y metodologías utilizadas en la Genética, y (2) reforzar los conocimientos teóricos adquiridos en las clases teóricas.

V - Objetivos / Resultados de Aprendizaje

Se pretende que al finalizar el dictado de la asignatura, los alumnos deberán ser capaces de:

- 1. Elucidar las leyes que presiden la transmisión de los genes, de generación en generación.
- 2. Comprender las bases fundamentales de los mecanismos hereditarios.
 - 3. Conocer las causas de variación genética de los seres vivos.
- 4. Estudiar la estructura de los genes, definir sus funciones y poner de manifiesto los factores que intervienen para regular su funcionamiento.
- 5. Comprender y conocer los nuevos avances referentes a la manipulación del material génico.
 - 6. Estudiar la distribución de los genes dentro de las poblaciones.
 - 7. Conocer las aplicaciones biotecnológicas de la Genética.

VI - Contenidos

UNIDAD I: ORGANIZACION DEL MATERIAL HEREDITARIO

1. Genética Clásica

Análisis Mendeliano: La experiencia de Mendel. Ley de la segregación. Ley de la transmisión independiente. Penetrancia y expresividad. .

Extensión del análisis mendeliano: Variaciones en las relaciones de dominancia. Alelos múltiples. Genes letales. Varios genes que afectan el mismo carácter. Interacción génica (intra e intergénica). Epistasis

La Teoría cromosómica de la herencia. Mitosis. Meiosis. Cromosomas sexuales y ligamiento al sexo. Inactivación del cromosoma X Análisis de genealogías. Símbolos genealógicos. Herencia dominante autosómica. Herencia recesiva autosómica. Herencia dominante ligada al cromosoma X. Herencia recesiva ligada al cromosoma Y.

2. Ligamiento y cartografía en eucariotas

Cartografía genética en diploides. Cruzamiento de 2 puntos. Cruzamiento de 3 puntos. Distancia de mapas. Orden de los genes. Coeficiente de coincidencia. Cartografía genética en haploides Esporas ordenadas Esporas desordenadas

3. Inmunogenética

Bases genéticas de la diversidad de los anticuerpos. Recombinación somática. Exclusión alélica. Cambio de clase de inmunoglobulinas. Receptores de células T.

Complejo principal de histocompatibilidad: HLA humano. Herencia de los haplotipos. HLA y ventajas de los antígenos HLA. Nomenclatura y clasificación de los antígenos HLA. Aplicación de la determinación de los antígenos HLA. Estudios de paternidad dudosa. Reglas para la aceptación médico legal de un sistema genético. HLA y enfermedad.

4. Naturaleza del material hereditario

La estructura del ADN. El experimento de Hershey y Chase. Replicación en procariotas. Enzimas comprometidas. Modelo del círculo rodante y del lazo D. Replicación en eucariotas. Gen codificador de proteínas ideal: procariota y eucariota. Estructura exón-intrón del gen ideal eucariota .Transcripción en procariotas. RNA polimerasa Señales de iniciación y terminación. Transcripción en eucarioticas. Promotores. Secuencias involucradas: Cajas TATA, CAAT y GC. Potenciadores o enhancers, Caperuzas y colas. Intrones. Factores de transcripción. Maduración o procesamiento del RNA eucariota. Organización del DNA en el genoma eucariota: DNA altamente repetitivo (DNA satélite). DNA moderadamente repetitivo.DNA copia única. Cromatina interfásica. La cromatina como complejo DNA e histonas. Nucleosomas y solenoides. Valor C. La paradoja del "valor C".

5. Organización genética en microorganismos.

El genoma vírico: Generalidades. Replicación del genoma vírico. Virus oncógenos Virus oncógenos de DNA. Virus oncógenos de RNA.

Genes móviles: Transposones que se mueven vía DNA: simples (IS), compuestos. Transposición conservativa y replicativa. Elementos controladores del maíz. Elementos transponibles en la disgénesis de los híbridos de Drosophila.

Transferencia de material hereditario: transformación. Conjugación. Transducción.

Elementos genéticos en E. coli: plásmidos transmisibles. El Factor F (fertilidad), Hfr y F'. Factores R (resistencia)

6. Recombinación del DNA.

Sistemas de protección del DNA. Consecuencias de la modificación y restricción. Enzimas de restricción y modificación del DNA. Tecnología del DNA recombinante. ¿Cómo construir el DNA quimérico? Vectores de clonación plasmídicos. Características deseables. Vectores de clonación bacteriofágicos. Tipos y características deseables. Cósmidos como vectores de clonación. Vectores de expresión. Requerimiento de un buen sistema de expresión. Producción de proteínas humanas por Ingeniería Genética.

UNIDAD II: EXPRESION Y REGULACION DEL MATERIAL GENETICO

7. Expresión y regulación génica en procariotas.

Control de la expresión génica en procariotas. Regulación coordinada de genes (operones procariotas). Operón lac (regulación positiva y negativa). Operón triptófano. Atenuación. El bacteriófago Lambda (represores y activadores de la transcripción).

8. Caracteres cuantitativos.

Caracteres de variación discontinua. Caracteres de variación continua. Significado de la herencia poligénica. Estadística poblacional. Heredabilidad. Herencia cuantitativa en el hombre.

UNIDAD III: EVOLUCION DEL MATERIAL GENÉTICO.

9. Alteraciones Genéticas

Base molecular de las mutaciones génicas. Mutaciones espontáneas. Mutagénesis inducida. Tipos de mutaciones génicas. Mutaciones inestables (amplificación de tripletes).

Alteraciones de los cromosomas. Nomenclatura que se emplea para describir síndromes cromosómicos. Disomías uniparentales. Impronta genética. Mosaicismo germinal.

10. Citogenética humana

El cromosoma eucariótico como un dispositivo de segregación. Nomenclatura de los cromosomas. Polimorfismo cromosómico. El cariotipo. El cariotipo humano y técnicas de bandeo cromosómico. Aplicaciones médicas del análisis cromosómico. Cuadros clínicos por alteraciones en autosomas y en cromosomas sexuales. Acciones de Salud en Genética. Diagnóstico prenatal

11. Genética de Poblaciones

Población y Equilibrio Hardy-Weinberg. Frecuencias alélicas y genotípicas. Supuestos del Equilibrio Hardy-Weinberg. Demostración del Equilibrio Hardy - Weinberg. ¿Cuándo deja de cumplirse el Equilibrio Hardy Weinberg. Migración. Deriva genética. Selección Natural. Especie y especiación. Mecanismos de aislamiento. Poblaciones alopátricas y simpátricas.

VII - Plan de Trabajos Prácticos

PLAN DE TRABAJOS PRACTICOS y SEMINARIOS

- A. Prácticos de Aula:
- 1. Mendelismo y Herencia Ligada al Sexo
- 2. Probabilidades y Genética
- 3. Interacción Génica
- 4. Ligamiento y recombinación de genes
- B. Prácticos de Laboratorio:
- 5. Preparación de soluciones

- 6. Extracción de ADN
- 7. Electroforesis en geles de agarosa
- 8. Cariotipo Humano: Cultivo de linfocitos

C. Seminarios:

Se realizará una sesión de seminarios, expuestos por los alumnos, que abarquen diversos temas desarrollados durante el dictado del curso. Su asistencia será de carácter obligatorio.

VIII - Regimen de Aprobación

REGIMEN DE REGULARIDAD

ALUMNOS REGULARES

- 1. Resultan alumnos de un curso aquellos que están en condiciones de incorporarse al mismo de acuerdo al régimen de correlatividades establecido en el Plan de Estudio de la carrera y que hayan registrado su inscripción en el período establecido.
- 2. Las Teorías no serán de carácter obligatorio, no obstante se recomienda su asistencia dado la discusión que allí se genera sobre los contenidos programáticos. Por otra parte los conocimientos impartidos en las mismas son básicos para rendir los exámenes parciales.
- 3. De acuerdo a la reglamentación vigente (Ord. Nº 13/03) los alumnos deberán aprobar el cien por ciento (100%) de los Trabajos Prácticos y de las Examinaciones Parciales.
- 4. Por la misma reglamentación los alumnos deben aprobar, en primera instancia, el setenta y cinco por ciento (75%) o su fracción entera menor, de los Trabajos Prácticos de Laboratorio, completando el 90% o su fracción entera menor, en la primera recuperación. En la segunda recuperación deberá totalizar la aprobación del cien por ciento (100%) de los Trabajos Prácticos de Laboratorio. Se solicita igual exigencia para los Trabajos Prácticos de Aula.
- 5. Se realizarán 3 (tres) exámenes parciales escritos, en el transcurso del dictado del curso. Se aprobará cada examen parcial con el 60% de las respuestas correctas.
- 6. Teniendo en cuenta la reglamentación vigente, cada parcial tendrá al menos una recuperación y no más de dos.
- 7. El alumno que trabaja y la madre con hijos de hasta seis años, tendrán derecho a una recuperación más de Exámenes Parciales sobre el total de los mismos (Resol. Nº 371/85).

ALUMNOS PROMOCIONALES

- 1. El alumno deberá cumplir con las exigencias de correlatividad que establece el Plan de Estudios de la carrera para Examen final.
- 2. Para mantener la condición de PROMOCIONAL el alumno deberá cumplir como mínimo con una asistencia del ochenta por ciento (80%) a las actividades teóricas y del ochenta por ciento (80%) a los trabajos prácticos programados por la asignatura. Y deberá tener el cien por ciento (100%) de los trabajos prácticos aprobados.
- 3. El alumno promocional tendrá derecho a una recuperación parcial. La nota de aprobación de cada evaluación parcial no será menor de siete (7).
- 4. El alumno deberá asistir al cien por ciento de los seminarios (100%), teniendo participación activa en los mismos, la cual será evaluada en cada sesión.
- 5. El alumno deberá rendir un examen integrador final.
- 6. En el caso de no satisfacer alguna de las exigencias de promocionalidad, el alumno automáticamente quedará incorporado al régimen de Alumnos Regulares.

IX - Bibliografía Básica

[1] CAVALLI-SFORZA BODMER. Genética de las poblaciones humanas.Ed. Omega S.A. Barcelona.1981. [2] GRIFFITHS, Anthony J.F., Miller, J.H., Suzuky, D.T., Lewontin, R.C., Gelbart, W.M. Genética Mc Graw-Hill Interamericana de España S.A. 1995

- [3] GRIFFITHS A et al: INTRODUCTION TO GENETIC ANALYSIS Versión electrónica de la 7ª edición del texto clásico (1999) Para consulta de aspectos básicos de genética.
- [4] KLUGG CUMMINGS. Conceptos de Genética. 5ta. Edición. Edit. Prentice Hall
- [5] LEWIN, Benjamín. Genes IV. Oxford University Press. 1994.
- [6] LODISH, Harvey y col. Biología Celular y Molecular. Ed. Médica Panamericana. 5° Edición. 2005
- [7] PIERCE, Benjamin A. Genética. Ed. Médica Panamericana S.A. 2006.
- [8] SOLARI, Alberto Juan. Genética Humana. Ed. Médica Panamericana. Buenos Aires. 2004.
- [9] TAMARIN, Robert H. Principios de Genética. Ed. Reverté S.A.

X - Bibliografia Complementaria

- [1] ALBERTS y col: INTRODUCCIÓN A LA BIOLOGÍA CELULAR. 2da Edición. Editorial Médica Panamericana SA. 2006
- [2] ALBERTS, B. Biología Molecular de la Célula. Ed. Omega. 1985.
- [3] ROONEY, D.E., Czepulkowsky, B.H. Human Cytogenetics. Vol. I and II. Oxford University Press. 1992.
- [4] STRYER, Lubert. Bioquímica. 3° Edición. Tomo I y II Ed. Reverté S.A. Barcelona 1993.
- [5] WATSON, James y col. Biología Molecular del Gen. Ed. Médica Panamericana. 2006.
- [6] REVISTAS PERIODICAS: Journal of Heredity, Hereditas, Citology, Chromosoma, Theorical and Applied Genetics
- (TAG), Mendeliana, Genoma, Genetics, Investigación y Ciencia, Boletín Genético.
- [7] PAGINAS WEB útiles para la asignatura
- [8] Online Mendelian Inheritance in Man (OMIM):
- [9] http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=Limits&DB=omim
- [10] National Center for Biotechnology Information (NCBI):
- [11] http://www.ncbi.nlm.nih.gov/
- [12] Glosario de términos de genética molecular (Human Genome Project Information):

http://www.ornl.gov/sci/techresources/Human_Genome/glossary/

- [13] Genetics Education Center University of Kansas Medical Center. (Incluye glosarios
- [14] de genética): http://www.kumc.edu/gec/
- [15] Recursos en torno al Proyecto Genoma Humano: http://www.gdb.org/gdb/hgpResources.html
- [16] Diccionarios médicos On-line:
- [17] http://www.tirgan.com/glossary.htm

XI - Resumen de Objetivos

- 1. Comprender las bases fundamentales de los mecanismos hereditarios y las causas de variación genética de los seres vivos.
- 2. Estudiar la estructura de los genes, definir sus funciones y poner de manifiesto los factores que intervienen para regular su funcionamiento.
 - 3. Estudiar la distribución de los genes dentro de las poblaciones.
 - 4. Conocer las aplicaciones biotecnológicas de la Genética.

XII - Resumen del Programa

PROGRAMA SINTETICO DE GENETICA

UNIDAD I: Organización del material hereditario

- 1. Genética clásica.
- 2. Naturaleza del material hereditario.
- 3. Inmunogenética.
- 4. Ligamiento y cartografía en eucariotas.
- 5. Organización genética en microorganismos.
- 6. Recombinación del DNA.

UNIDAD II: Expresión y regulación del material genético.

- 7. Expresión y regulación génica en procariotas.
- 8. Caracteres cuantitativos.

UNIDAD III: Evolución del material genético.

9. Alteraciones Genéticas.

10. Citogenética Humana.	
11. Genética de poblaciones	3.
XIII - Imprevistos	
	ácticos de Laboratorio dependerá de la compra de los insumos necesarios para poder realizarlos
	ácticos de Laboratorio dependerá de la compra de los insumos necesarios para poder realizarlos

ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA		
	Profesor Responsable	
Firma:		
Aclaración:		
Fecha:		