

# Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ingeniería y Ciencias Agropecuarias Departamento: Ingeniería Area: Electricidad

(Programa del año 2011) (Programa en trámite de aprobación) (Presentado el 01/11/2011 16:50:36)

#### I - Oferta Académica

| Materia                                  | Carrera                    | Plan Año | Período         |
|------------------------------------------|----------------------------|----------|-----------------|
| Conversión Electromecánica de la Energía | Ingeniería Electrónica     | 2011     | 2° cuatrimestre |
| Máquinas Eléctricas                      | Ingeniería Electromecánica | 2011     | 2° cuatrimestre |
| Máquinas Eléctricas                      | Ingeniería Industrial      | 2011     | 2° cuatrimestre |

# **II - Equipo Docente**

| Docente                | Función                 | Cargo      | Dedicación |
|------------------------|-------------------------|------------|------------|
| PEÑALOZA, RAUL ENRIQUE | Prof. Responsable       | P.Asoc Exc | 40 Hs      |
| PEREZ, CARLOS ENRIQUE  | Responsable de Práctico | JTP Semi   | 20 Hs      |
| DIAZ, LUIS ALBERTO     | Auxiliar de Práctico    | A.1ra Semi | 20 Hs      |
| MUÑOZ, LUIS WENCESLAO  | Auxiliar de Práctico    | A.1ra Semi | 20 Hs      |

# III - Características del Curso

| Credito Horario Semanal |          |                   |                                       |       |
|-------------------------|----------|-------------------|---------------------------------------|-------|
| Teórico/Práctico        | Teóricas | Prácticas de Aula | Práct. de lab/ camp/ Resid/ PIP, etc. | Total |
| Hs                      | 3 Hs     | 2 Hs              | 1 Hs                                  | 6 Hs  |

| Tipificación                                   | Periodo         |
|------------------------------------------------|-----------------|
| B - Teoria con prácticas de aula y laboratorio | 2° Cuatrimestre |

| Duración   |            |                     |                   |
|------------|------------|---------------------|-------------------|
| Desde      | Hasta      | Cantidad de Semanas | Cantidad de Horas |
| 10/08/2011 | 20/11/2011 | 15                  | 90                |

# IV - Fundamentación

El estudio de la materia abarca los aspectos del funcionamiento dinámico y de régimen, aspectos constructivos, método de análisis de funcionamiento y características de las máquinas eléctricas de uso más difundido.

Esta relacionado con las siguientes asignaturas; Electrotecnia, Generación, transmisión y distribución de la energía eléctrica y Tecnología de los materiales eléctricos.

El enfoque apunta a la formación teórica y práctica sobre máquinas eléctricas para que el estudiante este capacitado para calcular y proyectar e instalar las mismas.

## V - Objetivos / Resultados de Aprendizaje

El Contenido del programa, tanto teórico como práctico ha sido concebido para responder a los siguientes objetivos:

- 1. Aprendizaje de los aspectos básicos más importantes dentro de la ingeniería Electromecánica, en el contexto y ámbito que exige la etapa científica y tecnológica por la cual pasa nuestro país.
- 2. Utilizar las técnicas más modernas compatibles con las posibilidades del mercado.
- 3. Selección de los temas de acuerdo a un criterio realista y que el alumno sienta el interés y gusto por los mismos con su propia evaluación del contenido.

# VI - Contenidos

#### CAPITULO 0:

#### NORMAS DE SEGURIDAD ELECTRICA PARA ALUMNOS

Riesgo de incendio por causas eléctricas.

Shock eléctrico. Intensidad eléctrica.

Contacto directo e indirecto.

Elementos de protección.

Normas para trabajar en laboratorio

#### **CAPITULO 1:**

#### PERDIDAS Y RENDIMIENTOS

- 1. Pérdidas eléctricas. Pérdidas magnéticas.
- 2. Pérdidas mecánicas y adicionales
- 3. Rendimiento. Variación del rendimiento. Rendimiento cíclico.
- 4. Calentamiento y enfriamiento de máquinas. Temperatura límite.
- 5. Determinación de la temperatura máxima
- 6. Tipos de servicios en las máquinas. Capacidad de sobrecarga.

#### **CAPITULO 2:**

#### **TRANSFORMADORES**

- 1. Principios de funcionamiento.
- 2. Principales aspectos constructivos. Tipos de transformadores
- 3. Transformador en vacío. Corriente de vacío. Flujo principal y disperso. Fuerza electromotriz inducida. Diagrama vectorial.
- 4. Transformador en carga. Corriente componente de carga. Reducción de la tensión,
- 5. corriente y parámetros secundarios al primario.
- 6. Ecuaciones fundamentales. Diagrama vectorial. Circuito equivalente en carga.
- 7. Regulación de tensión. Diagrama de Kapp.
- 8. Determinación de parámetros a partir de ensayos. Pruebas en vacío y en cortocircuito
- 9. Rendimiento de transformadores.
- 10. Transformadores trifásicos. Distintos tipos de conexión.

Características de los distintos tipos.

11. Funcionamiento en paralelo de transformadores. Polaridad.

Corriente de circulación.

- 12. Autotransformador.
- 13. Transformador para instrumentos

# **CAPITULO 3:**

#### ARROLLAMIENTOS DE C.A.

- 1. Arrollamiento monofásico y polifásico.
- 2. Arrollamiento imbricado y ondulado.
- 3. FEM de un arrollamiento de C.A. Factor de distribución. Factor de paso.
- 4. FMM alterna. FMM giratoria. Número de polos. Velocidad sincrónica.

#### **CAPITULO 4:**

### MOTOR DE INDUCCION

- 1. Elementos mecánicos. Aspectos constructivos. Circuito magnético.
- 2. El motor de inducción como un transformador. El motor en reposo y

Arrollamiento abierto. El motor en reposo y arrollamiento cerrado.

El motor cuando gira. Deslizamiento. Rotor jaula de

ardilla.

- 3. Ecuaciones fundamentales. Diagrama vectorial. Circuito equivalente.
- 4. Relaciones de potencia y par motor. Equilibrio de potencia.
- 5. Funcionamiento de la máquina de inducción como freno y generador.
- 6. Curvas características.
- 7. Diagrama circular. Determinación y aplicación.
- 8. Determinación de los parámetros. Pruebas en vacío y de rotor frenado.
- 9. Arranque y control de velocidad

#### **CAPITULO 5:**

#### MOTOR DE INDUCCION MONOFASICO

- 1. Arrollamientos monofásicos.
- 2. Elementos mecánicos.
- 3. Principio de funcionamiento. Teoría del doble campo giratorio.
- 4. Par motor.
- 5. Ecuaciones. Circuito equivalente
- 6. Arranque. Arranque por flujo giratorio. Arranque por medio de un colector y escobillas.
- 7. El motor de polos sombreados.

## **CAPITULO 6:**

### MAQUINA SINCRONICA

- 1. Elementos mecánicos de la máquina sincrónica. La máquina de polos salientes. La máquina de rotor liso
- 2. Consideraciones generales de la máquina sincrónica. La característica en vacío. La
- 3. reactancia del flujo principal. Efecto de la saturación.
- 4. Diagrama vectoriales de generador y motor con rotor cilíndrico.

Máquina no saturada y saturada. Reacción de armadura.

- Características del generador. Características en vacío y del entrehierro. Características de cortocircuito. Triángulo de Potier.
- Característica en carga. Característica externa. Curva de regulación. Relación de cortocircuito.
- 7. Regulación de tensión en generador.
- Teoría de las dos reacciones. La esencia de la teoría de las dos reacciones. Fmm de la armadura eficaz en ambos ejes. Factores Cd y Cq.
- 9. Diagramas vectoriales de generador y motor con polos salientes. Reacción de armadura Máquina no saturada y saturada.
- 10. Característica del generador. Regulación de tensión
- 11. Relaciones de potencia y cupla en generador y motor. Pérdidas en el hierro. Pérdidas mecánicas. Pérdidas en el cobre. Potencia de campo giratorio. Característica par motor-ángulo. Principio motor de reluctancia.
- 12. Sincronización de generadores sincrónicos.
- 13. Funcionamiento en paralelo de generadores sincrónicos
- 14. Vaivén de una máquina sincrónica. Par motor de sincronización.
- 15. Frecuencia natural de la máquina sincrónica. Arrollamiento amortiguador
- 16. Motores sincrónicos pequeños. El motor de reluctancia. El motor de histéresis.
- 17. Cortocircuito sobre un generador. Reactancias transitoria y subtransitoria.

## **CAPITULO 6:**

#### MÁQUINA DE CORRIENTE CONTINUA

- 1. Elementos mecánicos. Aspectos constructivos. El circuito magnético.
- 2. Devanado de inducido. Devanado imbricado. Devanado ondulado.

Devanado simple y múltiple

3. Sistemas de excitación. Excitación independiente. Autoexcitación.

Excitación serie. Paralela. Compuesta

- 4. Fem inducida. Par electromagnético. Potencia interna de inducido
- 5. Funcionamiento en carga. Caída de tensión por resistencia.

Reacción de

inducido transversal y longitudinal. Compensación de reacción transversal.

6. Conmutación. Ecuación general de conmutación. Decalado de escobillas. Polos de conmutación. Devanado de compensación.

#### **CAPITULO 7:**

#### GENERADORES DE CORRIENTE CONTINUA

- 1 Generador de corriente continua. De excitación independiente, paralela, serie, compuesta.
- 2. Funcionamiento en paralelo de los generadores.

# **CAPITULO 8:**

#### MOTORES DE CORRIENTE CONTINUA

- 1. Motores de corriente continua. Generalidades. Fem, cupla y potencia
- Balance de potencia. Adaptación automática de par motor al par resistente.
- 3. Arranque de motores.
- 4. Características de funcionamiento. Característica de cupla, velocidad y mecánica.
- 4. Regulación de velocidad.
- Frenado. Frenado dinámico, regenerativo. Inversión del sentido de giro.
- 7. Mando electrónico de motores.

# **CAPITULO 9:**

#### **SERVOMOTORES**

- 1. Servomotores. Generalidades. distintos tipo
- 2. Principios de funcionamniento
- 3. Selección y aplicación

# VII - Plan de Trabajos Prácticos

## PROBLEMAS

TPN°1: Pérdidas y rendimiento

TPN°2 : Calentamiento y enfriamiento de máquinas

TPN°3: Transformadores. Circuito equivalente. diagrama vectorial

TPN°4: Transformadores. regulación y rendimiento

TPN°5: Paralelo de transformadores

TPN°6: Fem inducidas en bobinados trifásicos

TPN°7: Motor asincrónico trifásico

TPN°8: Alternadores. Impedancia sincrónica

TPNº9: Alternadores. Triángulo de Potier

TPN°10: Máquinas de Corriente continua. Arranque y control de

velocidad

#### LABORATORIO

- 1- Ensayo de transformador. Determinación de parámetros
- 2- Ensayo de Alternador. Determinación de curvas caracteristicas
- 3-Control de motor asincrónico. Velocidad. Arranque. Frenado
- 4- Determinación y análisis de curvas caracteristicas maquina de corriente continua
- 5- Control motor de cc. Arranque Frenado. Inversión marcha

Nota: En la primera clase práctica se realizará una introducción a las Normas de seguridad eléctricas y reglas básicas de higiene y seguridad en laboratorios. Se suministrará al alumno una copia detallando los aspectos teóricos y prácticos del tema. Una copia similar estará a la vista de los alumnos en un transparente. El objetivo es brindar seguridad frente a los riesgos posibles que puedan surgir y concientizar a los mismos para su aplicación en la vida diaria y especialmente en su futura acción profesional.

# VIII - Regimen de Aprobación

La asignatura se desarrollará a través de clases teórico- prácticas, con una introducción al tema por parte del docente y aplicaciones prácticas mediante problemas, ensayos y mediciones en laboratorio.

## REGIMEN DE ALUMNOS REGULARES:

Para obtener la regularidad se exigirá lo siguiente:

- 1. Asistencia del 80 % a las clases prácticas de problemas.
- 2. Asistencia del 100% a las clases de laboratorio.
- 3. Confección de una carpeta de trabajos prácticos, tamaño oficio:

La carpeta deberá presentarse completa con todos ejercicios,

problemas e informes de

ensayos realizados en laboratorio realizados durante el año

lectivo y deberá llevar el

visto bueno V B del jefe de trabajos prácticos J.T.P.

- 4. Durante cada cuatrimestre se tomarán dos exámenes parciales de contenido práctico, que deberán aprobar para obtener la regularidad.-
- 5. Se tomará un examen parcial recuperatorio por cada uno de los parciales para aquellos alumnos que hayan resultado aplazados en algunos parciales.

El alumno deberá presentar la carpeta de trabajos prácticos con la resolución de la totalidad de los problemas propuestos. La presentación de los problemas deberá ser realizada en word y se evaluará tambien la calidad de la presentación, gráficos, dibujos, enfoque y profundidad del abordaje del problema. Se recomendará al alumno el uso de software de cálculo como Matlab, Simulink y PSpice

### **EXAMEN FINAL:**

Evaluación de alumnos libres.

El examen final de alumnos libres consistirá en un evaluación escrita sobre trabajos prácticos y problemas del presente programa y posterior evaluación oral sobre parte teórica del programa previa aprobación de lo anterior.

Evaluación de alumnos regulares.

El examen final de alumnos regulares consistirá en la exposición oral de temas del programa de la materia y la resolución de un ejercicio o ejemplo propuesto por el alumno o planteado por el profesor.

En el examen final tanto libre como regular se evaluará además de los conocimientos técnicos, la expresión oral del alumno, su desempeño y presentación para desarrollar el tema expuesto.

En general, tanto en las evaluaciones como en la presentación de trabajos, además de evaluar los aspectos técnicos se evaluará el desempeño del alumno en lo que hace a su capacidad de expresión oral y de presentación.

# IX - Bibliografía Básica

- [1] Máquinas de corriente alterna, Liwschitz Garic, M y Whipple, C, Editorial C.E.C.S.A. Edicioón México 1984
- [2] Circuitos Magnéticos y Transformadores, E. E. Staff del M.I.T., Editorial Reverte. Edición Madrid 1984.
- [3] Máquinas Eléctricas, Chapman Stephen, Ed. Mc Graw Hill interameriacna, 2004.
- [4] Máquinas de Corriente Altena, Lawrence Ralph, Ed.Hispanoamericana Edicion 1999
- [5] Máquinas Eléctricas, Tomos I y II Konstensko, M.P. y Piotrovsky, L.M., Editorial MIR. Edición Moscú 1984
- [6] Prácticas de Laboratorio de máquinas eléctricas, J. Palacios Bregel, Paraninfo 2º Edición

# X - Bibliografia Complementaria

- [1] Transformadores, Espinadel, E., Editorial nueva librería. Edición Bs.As. 1984
- [2] Máquinas Eléctricas, Marcelo Sobrevila, Libreria y Editorial Alsina, 1ºEdición 2000
- [3] Problemas Resueltos de Máquinas Eléctricas, Guillermo Ortega Gomez, Thomson Internacional editores
- [4] [11] Apuntes de cátedra 2011

# XI - Resumen de Objetivos

El presente curso tiene el objetivo primordial de lograr en el alumno un conocimiento integral de las máquinas eléctricas. esto le permitirá afrontar trabajos de proyectos y ejecución de obras. además le permitirá ahondar, en el futuro, en alguno de las especialidades relacionadas con la asignatura.

# XII - Resumen del Programa

- 1- Características generales de las máquinas Eléctricas
- 2- Transformadores
- 3- Máquinas de corriente alterna asincrónicas
- 4- Máquinas de corriente alterna sincrónica
- 5- Máquinas de corriente continua

| _ |
|---|

| ELEVACIÓN y APROBACIÓN DE ESTE PROGRAMA |                      |  |
|-----------------------------------------|----------------------|--|
|                                         | Profesor Responsable |  |
| Firma:                                  |                      |  |
| Aclaración:                             |                      |  |
| Fecha:                                  |                      |  |