Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ingeniería y Ciencias Agropecuarias
Departamento: Ciencias Básicas
Área: Matemática
(Programa del año 2009)
(Programa en trámite de aprobación)
(Programa presentado el 16/02/2010 12:44:40)
I - Oferta Académica
Materia Carrera Plan Año Periodo
Matemáticas Especiales Ingeniería Electromecánica 2009 2° cuatrimestre
Matemáticas Especiales Ingeniería Industrial 2009 2° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
ALANIZ, SARA AIDA Prof. Responsable P.Adj Exc 40 Hs
FELIZZIA, DANIEL JORGE Prof. Colaborador P.Adj Exc 40 Hs
BARACCO, MARCELA NATALIA Responsable de Práctico A.1ra Exc 40 Hs
MORENO, MARCELO Auxiliar de Práctico A.2da Simp 10 Hs
SIMUNOVICH, ROBERTO JAVIER Auxiliar de Práctico A.2da Simp 10 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total B - Teoria con prácticas de aula y laboratorio Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 3 Hs. 2 Hs. 1 Hs. 6 Hs. 2º Cuatrimestre 31/08/2009 04/12/2009 15 90
IV - Fundamentación
El curso de Matemáticas Especiales se ubica en el segundo cuatrimestre del segundo año en el plan de estudio de la carrera.
Esto se debe a que se utiliza como conocimientos previos los desarrollados en Análisis Matemático I, Algebra I, Algebra II y
Análisis Matemático II, con el apoyo de conceptos que involucran fenómenos físicos para su aplicación. En este curso se
estudia, el tema series de Fourier, con el objeto de ser aplicado a solucionar modelos matemáticos que se representan
mediante ecuaciones diferencioales parciales. Este último tema también es tratado en el curso y además se estudia la solución
de ecuaciones diferenciales ordinarias por el método de transformada de Laplace. Otro de los temas que se estudia es el de análisis de variable compleja.
Todos los temas a tratar en el curso intentan dar fundamento teórico a posteriores modelos matemáticos representativos de
fenómenos particulares, como así también analizar fenómenos y determinar modelos simplificados que los representan.
Además se pretende dar métodos de resolución de dichos modelos estandar.
V - Objetivos / Resultados de Aprendizaje
Objetivos generales:
Lograr que los alumnos adquieran los conocimientos básicos relativos al análisis de variable compleja y Series de Fourier y
Resolucion de Ecuaciones diferenciales por medio de series de potencia, transformada de Laplace u otros metodos para las
ecuaciones diferenciales parciales.
Lograr que los alumnos adquieran la capacidad de interpretar los
problemas concretos cuya resolución implica la aplicación de los temas teóricos aprendidos.
Lograr que los alumnos aprendan a relacionar temas de asignaturas afines a traves de modelos matemáticos.
Objetivos particulares:
Lograr que el alumno distinga ciertos tipos de EDO y la conveniencia de aplicar el método de desarrollo por serie de
potencias, o transformada de Laplace.
Lograr que el alumno reconozca la posible periodicidad de una función y encuentre su desarrollo en serie de Fourier para
posteriormente utilizar esto en la resolución de ecuaciones diferenciales parciales que representan por ejemplo la ecuación de una onda o el flujo a traves de una superficie.
Lograr que el alumno resuelva problemas que involucren una variable compleja y aplique el analisis desarrollado en este
tema.
VI - Contenidos
Unidad 1.- Series de Fourier
Funciones periódicas. Funciones pares e impares. Funciones de período arbitrario. Series trigonométricas. Series de Fourier.
Fórmulas de Euler. Desarrollo de medio rango. Forma compleja de la serie de Fourier. Integral de Fourier.

Unidad 2.- Transformada de Laplace
Transformada de Laplace. Transformada inversa. Linealidad. Transformada de Laplace para derivadas e integrales.
Transformación de ecuaciones diferenciales ordinarias. Fracciones parciales. Factores no repetidos . Raíces complejas únicas.
Raíces múltiples. Derivación e integración de transformada. función escalón unidad. Traslación sobre el eje t. Funciones
periódicas. Teorema de convolución.

Unidad 3.- Ecuaciones diferenciales en derivadas parciales.
Funciones circulares. Método de resolución analítico y numérico. Conceptos básicos. Eliminación de funciones arbitrarias.
Integración de ecuaciones diferenciales parciales. Ecuaciones diferenciales parciales con coeficientes constantes. Cuerda
vibrante. Ecuación unidimensional de la onda. Separación de variables(Método del producto). Solución de D''''Alembert para
la ecuación de la onda. Flujo unidimensional del calor. Flujo del calor en una barra infinita. Membrana vibrante. Ecuación
bidimensional de onda. Soluciones numéricas de ecuaciones diferenciales parciales. Problemas físicos que involucran
ecuaciones diferenciales parciales. Funciones circulares: Legendre. Bessel. Hermite. Laguerre. Funciones de Bessel de orden
n.

Unidad 4.- Análisis de Variable Compleja
Función de variable compleja. Límite, derivada. Función analítica. Ecuaciones de Cauchy-Riemann. Ecuaciones de Laplace.
Funciones variacionales. Raíz. Funcion Exponencial. Funciones trigonométricas e hiperbólicas. Logaritmo. Potencia general.
Transformación. Representación conforme. Integrales en el plano complejo. Propiedades. Teorema de la integral de Cauchy.
Evaluación de la integral indefinida. Fórmula de la integral de Cauchy. Derivadas de una función analítica. Sucesiones.
Series. Convergencia y divergencia de series. Serie de potencia. Series de Taylor. Prolongación analítica. Método práctico
para obtener serie de potencia. Series de Laurent. Ceros y singularidades. Residuos. Teorema de los residuos. Evaluación de
las integrales reales

VII - Plan de Trabajos Prácticos
Los trabajos prácticos consistirán en resolver ejercicios y problemas de aplicación de los conceptos tratados en el curso. Se
utilizarán como herramientas de trabajo: calculadoras científicas, graficadoras y software. El Software con el cual se trabajará es Mathemática y/o MatLab
VIII - Regimen de Aprobación
Regimen de Alumnos Regulares:
El Alumno para alcanzar la regularidad en la materia deberá ajustarse a los siguientes requisitos.
1.- Deberá:
a) Asistir regularmente a no menos del 70 % de las clases teórico-prácticas del curso.
b) Aprobar el 70% de los trabajos prácticos, para esto deberá demostrar poseer los conocimientos teóricos correspondientes a la práctica.
2.- Se tomarán 2 (dos) evaluaciones parciales que versarán sobre los temas desarrollados y en fecha aproximada segunda
quincena de septiembre y primera quincena de noviembre. Además el alumno deberá en cada evaluación parcial alcanzar un
puntaje no inferior al 60%.
3.- Los alumnos que no alcancen el 70% de los trabajos prácticos aprobados, antes del parcial, podrán recuperar los mismos
en fecha previa o durante la evaluación.
4.- Cada evaluación parcial contará con su recuperacion dentro de un termino de aproximadamente de una semana.
5.- Aquellos alumnos que no hayan aprobado una o ninguna de las instancias dadas para cada parcial, tendran derecho a una
recuperación de o de los parciales que adeuda.
6.-A los alumnos comprendidos en el Art. 24, inc. d, de la Ord. C. S. 13/03,y acrediten en tiempo y forma esta situación
tendrán derecho a otra instancia de recuperación cualquiera sea la condición con respecto al número de parciales aprobados.
Regimen de aprobación de la asignatura:
El requisito de aprobación de la asignatura para los alumnos que regularizaren la misma implica aprobar un examen final.
Este examen es oral y en el mismo se desarrollarán los conceptos teóricos y su relaciones.
Régimen de alumnos libres
El alumno que se presenten a rendir examen en condición de libre deberá aprobar previo al examen oral correspondiente a un
alumno regular, una evaluación escrita eliminatoria de caracter teórico-práctica. Este examen escrito se considerará aprobado
cuando se responda satisfactoriamente a no menos del 75%.
IX - Bibliografía Básica
[1] ERWIN KREYSZIG - Matemática Avanzada para la Ingeniería - Vol I y II - Editorial Limusa, ed. 2004.
[2] V. FRAILE - Ecuaciones Diferenciales - Editorial Tebar Flores, 1991
[3] EDWARDS-PENNEY – Ecuaciones diferenciales y problemas con valores de frontera – Pearson Educación – 4º edición – 2009
[4] WARD BROWN-CHURCHILL – Variable compleja y aplicaciones – Mc-Graw-Hill/Interamericana – 7º edición – 2004
[5] MARCELO SPROVIERO – Transformadas de Laplace y de Fourier – Nueva Librería – 2005
[6] NAGLE-SAFF-SNIDER – Ecuaciones diferenciales y problemas con valores en la frontera – Pearson Educación – 4º edición – 2005
[7] PETER O’NEIL – Matemáticas avanzadas para ingeniería – Internacional Thomson Learning – 5º edición - 2004
[8] DENNIS ZILL - Ecuaciones diferencial, con aplicaciones de modelado - Editorial Thomson Learning Iberoamericana. 2006
[9] MANUEL GIL RODRIGUEZ – Introducción rápida a Matlab y Simulink para Ciencia e Ingeniería.- Ediciones Díaz de Santos.-
X - Bibliografia Complementaria
[1] GEORGE F. SIMMONS - Ecuaciones diferenciales con apliacaciones - Editorial Mc Graw Hill. ed. 2000.
[2] RICHARD L. BURDEN, J. DOUGLAS, F. AYRES - Análisis Numérico Grupo Editorial Iberoamericana. 1985.
[3] C. PEREZ - Cálculo simbólico y numérico con Mathemática. 1995.
[4] WILLIAM R.DERRICH - Variable compleja con aplicaciones - Grupo editorial Iberoamérica. 1993.
[5] N. PISKUNOV - Calculo Diferencial e Integral. Editorial Mir.1991
[6] I. S. y E. S. SOKOLNIKOFF - Matemática Superior para Ingenieros y Físicos. Editorial Nigar, 1975.
[7] F. MERRIT - Matemática Aplicada a la Ingeniería - Editorial Labor . 1976
XI - Resumen de Objetivos
Introducir al alumno en conceptos y herramientas matemáticas necesarias para el abordaje de problemas particulares de la
Ingeniería
XII - Resumen del Programa
Funciones de variable compleja. Representación y transformación conforme. Transformada de Laplace en el campo real.
Serie de Fourier. Ecuaciones diferenciales a derivadas parciales, métodos de resolución analíticos y numéricos.
XIII - Imprevistos
Ante la ocurrencia de alguna situación imprevista, que dificulte o interrumpa el normal dictado de la materia, se procederá a
implementar las medidas que resulten más convenientes, a fin de subsanar en lo posible, tales inconvenientes y lograr que los alumnos rindan satisfactoriamente todo el programa de la asignatura.
XIV - Otros