Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Química Bioquímica y Farmacia Departamento: Quimica Área: Tecnología Química y Biotecnología |
I - Oferta Académica | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
II - Equipo Docente | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
III - Características del Curso | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
IV - Fundamentación |
---|
La enseñanza y estudio de los fenómenos de transporte permiten la interpretación de las propiedades involucradas en cantidad de movimiento, calor y materia y constituyen las bases para el diseño de las Operaciones en la rama de la Ingenieria y Ciencias Aplicadas.
|
V - Objetivos / Resultados de Aprendizaje |
---|
Impartir conocimientos básicos del tema denominado, “Fenómenos de Transporte”, mediante el tratamiento del Transporte de Cantidad de Movimiento, Transporte de Energía y Transporte de Materia. Enseñar el modo de predecir los coeficientes de cada una de estas propiedades. Aplicar la transferencia de cantidad de movimiento, calor y materia a través de una interfase, que implique un cambio en la composición de soluciones y mezclas, como son las operaciones de transferencia de masa. Desarrollar expresiones adimensionales utilizadas en el cambio de escala
|
VI - Contenidos |
---|
PROGRAMA ANALÍTICO Y/O DE EXAMEN:
Tema 1: Transporte: Generalidades. Objeto del estudio del fenómeno de transporte. Propiedades transportadas. Transporte y las operaciones básicas de la industria. Transporte y Planta piloto. Generalidades sobre mecánica de fluidos. Estática. Cinemática: ecuación de continuidad. Deducción por balance diferencial. Expresión en coordenadas cilíndricas, esféricas. Notación vectorial. Tema 2: Transporte de Cantidad de Movimiento Coeficiente de viscosidad: Ley de Newton. Predicción del coeficiente de viscosidad para gases a elevada presión. Diagramas generalizados. Gases a baja presión. Coeficiente de viscosidad a partir de la teoría cinética. Predicción a partir de los parámetros de Lennard-Jones. Viscosidad de líquidos. Fluidos no-newtonianos. Diferentes modelos. Análisis diferencial del Transporte de Cantidad de Movimiento: Ecuación general en función de la densidad de flujo de cantidad de movimiento. Ecuación general en función de los gradientes de velocidad, forma vectorial. Ecuación de Navier-Stokes. Expresión de la ecuación general de conservación de cantidad de movimiento en coordenadas cilíndricas y esféricas. Aplicaciones de la ecuación general de conservación de cantidad de movimiento. Elementos teóricos de flujo turbulento. Tema 3: Transporte Interfacial de Cantidad de Movimiento. Análisis Empírico de Cantidad de Movimiento: Análisis dimensional. Grupos adimensionales. Método de diseño por coeficientes de transferencia. Transporte interfacial de cantidad de movimiento. Factores de fricción para tuberías y esferas sumergidas en fluidos. Tema 4: Transporte de Energía Coeficiente de conductividad térmica: Ley de Fourier. Predicción del coeficiente de conductividad térmica para gases a elevada presión. Diagramas generalizados. Gases a baja presión. Coeficiente de conductividad térmica a partir de la teoría cinética. Predicción a partir de los parámetros de Lennard-Jones. Conductividad térmica de líquidos. Conductividad térmica de sólidos. Análisis diferencial del Transporte de Energía: Ecuación general de la conservación en función de las densidades de flujo de energía y cantidad de movimiento. Ecuación general en función de los gradientes de temperatura y velocidad. Ecuaciones de energía simplificadas. Expresiones en coordenadas cilíndricas y esféricas. Aplicación de la Ecuación General de Conservación de la Energía. Tema 5: Transporte Interfacial de Energía Análisis empírico: Convección natural. Convección forzada. Grupos adimensionales. Método de diseño por coeficientes de transferencia. Transporte interfacial de calor. Coeficiente de transmisión de calor para flujo en tubos y flujo alrededor de objetos sumergidos. Coeficientes de transmisión de calor para convección forzada en tubos. Tema 6: Transporte de Materia: Coeficiente de difusión de materia: Ley de Fick. Predicción del coeficiente de difusión para gases a elevada presión. Diagramas generalizados. Gases a baja presión. Coeficiente de difusión a partir de la teoría cinética. Predicción a partir de los parámetros de Lennard-Jones. Difusividad de materia en líquidos. Diferentes formas de expresión e interrelación de las densidades de flujo de materia. Análisis diferencial de Transporte de Materia: Ecuación para mezclas binarias en función de la densidad. Ecuación de continuidad en función de las concentraciones de los componentes. Forma vectorial. Formas simplificadas. Expresión en coordenadas cilíndricas y esféricas. Tema 7: Transporte Interfacial de Materia Análisis Empírico: Transporte interfacial de materia. Método de diseño por coeficientes de transferencia. Transporte interfacial de materia en sistemas binarios. Coeficientes de transferencia de materia individuales. Predicción de los coeficientes de transporte de materia. Coeficientes totales de transferencia de materia. Otras teorías de transporte interfacial de materia. Concepto de membrana y el transporte de materia a través de dos interfases. Analogías: Relaciones entre transferencia de calor, masa y cantidad de movimiento. Grupos adimensionales. Correlaciones. |
VII - Plan de Trabajos Prácticos |
---|
Trabajos Prácticos de Aula:
Problemas sobre: Transporte de Cantidad de Movimiento, transmisión de Calor, transporte de Materia, Predicción de Coeficiente de Transporte y Análisis Dimensional. Trabajos Prácticos de Laboratorio: 1. Transferencia de Cantidad de Movimiento - Determinación de Viscosidad y curva de fluidez de diferentes alimentos líquidos (mayonesa, chocolate, salsa de tomate, puré de manzana). 2. Transferencia de cantidad de Calor - Determinación del Coeficiente de Transferencia de Calor (U), en un intercambiador con flujo de agua en contra corriente. 3. Transferencia de Materia en un sistema gas-sólido-gas- Determinación de Permeabilidades de oxígeno a través Películas de Envoltorios Plásticos para Alimentos. SEGURIDAD E HIGIENE EN EL LABORATORIO 1) Recomendaciones generales de orden personal - Trabaje en el laboratorio con al menos otra persona que tenga conocimiento de ello. -Use propipetas o pipetas automáticas para pipetear solventes orgánicos, soluciones tóxicas o ácidos o bases fuertes. -Emplee guantes y/o gafas para manipular sustancias peligrosas, inflamables o explosivas y hágalo bajo campana. - No lleve sus manos sin lavar a la boca u ojos si ha usado productos químicos. - No ingiera alimentos o bebidas en el laboratorio. 2) Recomendaciones generales con respecto al laboratorio - Mantenga las mesadas limpias y libres de materiales extraños al trabajo. - Rotule inmediatamente cualquier reactivo, solución o muestra para el análisis. -Todas las botellas y recipientes deben estar identificados de la siguiente forma: nombre, concentración, fecha de preparación y responsable. Cuando se tenga duda sobre un reactivo éste se descartará. -Mantener limpia la campana de extracción, no usarla como lugar de almacenamiento. - Limpiar inmediatamente cualquier derrame de productos o reactivos. Protéjase si es necesario para realizar la tarea. - En caso de derrames de productos inflamables, tóxicos o corrosivos siga los siguientes pasos: interrumpa el trabajo, advierta a las personas próximas sobre lo ocurrido, realice o solicite ayuda para una limpieza inmediata. - Cuando se utilicen solventes inflamables, asegurarse que no haya fuentes de calor cercanas. 3) Operaciones rutinarias en el Laboratorio a- Trabajo con material de vidrio: Cuando se insertan partes de vidrio en tubos de goma o tapones se las debe lubricar con agua, glicerina o detergente y deben protegerse las manos con guantes o una tela doblada. Mantener el tapón entre el pulgar y el índice, nunca en la palma de la mano. b- Encendido de fuego: Antes de encender una llama asegúrese que lo hace en un lugar permitido donde no haya material inflamable a su alrededor. Pruebe con solución de detergente la tubería, robinete y mechero para evitar pérdida de gas. Encienda el mechero al principio con la menor apertura posible del robinete. No abandone el laboratorio sin haber apagado los mecheros. c- Trabajo con ácidos y bases fuertes: Abrir las botellas despacio y bajo campana. Antes de tocar una botella verificar que no esté húmeda. No la tome del cuello ni del tapón. Si está contenida en un recipiente, verifique el estado del mismo y tómelo sosteniéndolo por la base. Trabaje siempre con guantes. Nunca intente verificar el contenido de una botella o recipiente por su olor. Pipetear con propipeta. No apoyar la pipeta usada sobre la mesada, colocarla sobre un vidrio de reloj. Las propipetas se deben guardar con la ampolla llena de aire (sin aplastar) porque se deforman y pierden su función. Para diluir ácidos concentrados: Agregar el ácido sobre el agua de a poco y agitando y no a la inversa para evitar proyecciones del ácido en todas direcciones. Use envases plásticos para guardar ácido fluorhídrico porque ataca al vidrio. El hidróxido de sodio también se guarda en recipientes plasticos. En todos los casos, tapar con firmeza las botellas de manera de evitar pérdida de concentración por volatilización (HCl, HNO3), dilución (higroscopicidad del H2SO4) o carbonatación del NaOH. 5) Procedimiento en caso de incendio Si se produce un incendio se debe primero informar a los demás y pedir ayuda. Si el incendio es pequeño puede intentar apagarlo o circunscribirlo cortando el gas y atacando el incendio con arena, extintor o agua. Con los equipos eléctricos no se puede usar agua. El chorro del extintor se debe dirigir a la base de la llama. Si corre el riesgo de verse atrapado o alcanzado por las llamas o una explosión o sofocarse por el humo abandone el lugar (su vida es más valiosa que cualquier equipo). Retírese del lugar en orden, sin pánico. Si hay humo, arrójese al suelo. El humo va hacia arriba. Si debe pasar por zonas de intenso calor, cúbrase la cabeza con una tela preferentemente mojada. Si se estaba trabajando con materiales peligrosos (tóxicos o corrosivos), antes de alejarse del lugar del incendio informe de esta circunstancia a los que vayan a combatir el incendio. Se debe conocer antes que nada dónde están ubicados en el Laboratorio, los elementos de lucha contra incendios, las llaves de gas, electricidad, el teléfono y los números de emergencia . PRIMEROS AUXILIOS 1) Acidos corrosivos: Sulfúrico, clorhídrico, nítrico, fluorhídrico, etc. Ingesta: Se administrará rápidamente líquidos acuosos adicionados con agentes alcalinos débiles como: • Mg(OH)2 al 8 % • Gel de Al(OH)3 • Cal apagada (Ca(OH)2) en forma de solución azucarada. NO usar bicarbonato de sodio pues da origen a desprendimiento de gas carbónico, lo cual puede provocar perforación en las paredes digestivas ya fuertemente traumatizadas. Lesiones externas: En piel: lavar la región atacada con abundante agua y aplicar compresas embebidas en los neutralizantes alcalinos antes indicados En boca: enjuagar con una solución de bicarbonato de sodio. En ojos: colocar solución de bicarbonato de sodio al 22,5 % o isotónica con las lágrimas. Derrames: NO utilizar agua. Utilizar arena, bicarbonato de sodio o mezcla de ambos protegiendo las manos con guantes de goma. 2) Alcalis cáusticos: Hidróxido de sodio o calcio, amoníaco, carbonato de sodio o potasio, etc. Las lesiones son mas peligrosos que los ácidos porque actuan a mayor profundidad en los tejidos (saponificación de triglicéridos). Ingesta: Se puede suministrar abundante agua fría para diluir el álcali y luego soluciones acuosas de ácidos débiles. • Vinagre al 1 % • Ácido acético al 1 %o. • Jugo de limón (ácido cítrico). Lesiones Externas: En piel: lavar la región atacada con abundante agua y aplicar compresas embebidas en los neutralizantes antes indicados. En boca: enjuagar con agua y luego con alguna de las soluciones antes indicadas. Derrames: Si el álcali es líquido y en poca cantidad, se puede lavar con abundante agua y drenar a la rejilla o pileta. Si es sólido, juntar con pala de plástico y verter poco a poco en la pileta, haciendo correr abundante agua. Siempre protéjase las manos con guantes de goma. 3) Metales pesados: Por ejemplo Cd, Zn, Pb, Be, Cr, Hg. Toxicidad: En general los metales pesados y sus sales son tóxicos o cancerígenos si se ingieren en cantidades apreciables o se inhalan en forma permanente. El contacto con la piel puede producir irritación. Lesiones: El material que entra en contacto con la piel debe ser lavado enseguida con abundante agua, al igual si se salpican los ojos. Procedimiento Básico para Utilizar un Extintor Portátil 1.- Asegúrese que el extintor se encuentra en buenas condiciones, el precinto no está roto y la presión es la apropiada. Para los extintores de CO2, el peso es un indicador de que el mismo está lleno. 2.- Rompa el precinto y quite el anillo de seguridad. Si el extintor es de presión indirecta, percuta el cilindro de gas, empujando la palanca hacia abajo. 3.- Realice una pequeña descarga del extintor frente a Ud., a fin de verificar si no tiene problemas 4.- Dirija la boquilla del extintor hacia la base de la llama, y con el viento a su favor, dispare repetidas veces y de forma que cubra la mayor área del incendio, hasta que controle el mismo. 5.- Luego de terminar y verificar que no existen mas focos, ventile el área y recargue los extintores utilizados. 6.- Recuerde que el uso de extintores portátiles es sólo para principios de incendio. Nota: Se entregará a los alumnos una guia sobre "SEGURIDAD E HIGIENE EN EL LABORATORIO" |
VIII - Regimen de Aprobación |
---|
REGIMEN PARA ALUMNOS REGULARES INGENIERÍA EN ALIMENTOS
1. INSCRIPCION: Podrán inscribirse y cursar como regulares aquellos alumnos que hayan regularizado las asignaturas Físico-Química Aplicada y Balance de Materia y Energía y hayan aprobado la asignatura Matemáticas Especiales. 2. TRABAJOS PRACTICOS: La asistencia a los trabajos prácticos es obligatoria. El alumno deberá aprobar en primera instancia el 80% del plan de trabajos prácticos, debiendo tener al completar el curso el 100% de los mismos aprobados. 3. EVALUACIONES PARCIALES Y RECUPERACIONES: Se realizarán (3) Examinaciones parciales escritas sobre problemas de aula y trabajos prácticos de laboratorio. El alumno tendrá derecho a una (1) recuperación por cada parcial y a una segunda recuperación solo cuando tenga aprobado 2(dos) de las examinaciones parciales [OCS Nª13 art 24 inc( b)] . El alumno que trabaja y la alumna que es madre de un hijo menor de 6 años, tendrán derecho a una recuperación mas sobre el total de la Evaluaciones Parciales establecida. Cada parcial deberá aprobarse con un mínimo del 70%. La ausencia a los parciales deberá ser adecuadamente justificada, en caso contrario se considerará no aprobado mereciendo una calificación de 1 (uno). 4. EXAMEN FINAL: Podrán rendir el examen final de la asignatura los alumnos que hayan cumplido con los requisitos de regularización establecida en la presente asignatura y además hayan aprobado en forma completa las asignaturas Físico-Química Aplicada y Balance de Materia y Energía. REGIMEN PARA ALUMNOS PROMOCIONALES 1. INSCRIPCION: Podrán cursar por el Régimen de Promoción los alumnos que hayan aprobado en forma completa las asignaturas Físico-Química Aplicada, Balance de Materia y Energía y Matemáticas Especiales. 2. CLASES TEORICAS: Para mantener la condición de alumno promocional deberá asistir al 80% de las actividades teóricas programadas. 3. TRABAJOS PRACTICOS: El alumno deberá aprobar en primera instancia el 80% de los trabajos prácticos, debiendo tener al finalizar el curso el 100% de los mismos aprobados. 4. EVALUACION PARCIALES Y RECUPERACIONES: Se realizarán (3) evaluaciones parciales teóricas orales o escritas y (3) evaluaciones parciales de trabajos prácticos escritas, las cuales comprenderán la totalidad de los temas del Programa de Examen de la Asignatura. El alumno tendrá derecho a recuperar (1) Evaluación de Teoría y (1) Evaluación de Trabajos Prácticos. Cada parcial deberá aprobarse con un mínimo del 70%. 5. PERDIDA DE PROMOCIÓN: En caso de no cumplir con alguna de las condiciones establecidas del régimen para alumnos promocionales, el alumno pasará automáticamente a la condición de regular, debiendo cumplir con lo establecido en el reglamento para alumnos regulares. 6. NOTA DEFINITIVA: La calificación final de la asignatura resultará del promedio de todas las calificaciones obtenidas en las evaluaciones parciales, incluyendo las no aprobadas y la nota correspondiente a una evaluación final integrada. Se calificará de 1 a 10, considerándose los centésimos. |
IX - Bibliografía Básica |
---|
[1] - Bird B.R., Stewart W.E., Lightfoot E.N., Fenómenos de Transporte, Ed. Reverté, 1979.
[2] - Benet C.O., Myers J.P., Transferencia de Cantidad de Movimiento, Calor y Materia, Ed. Reverté, 1979. [3] - Treybal R.E., Operaciones de transferencia de masa, Ed. Mc.Graw Hill. Ed., 1980. [4] - Backhurst J.R., HAker J.H. and Porter J.E., Problems in Heat and Mass Transfer, Ed. Arnold Pub., 1980. [5] - Hines A., Maddox R., Mass Transfer. Fundamentals and Applications. Prentice Hall, Inc.,1985. [6] - Geankoplis, C.J., Transport Processes and Unit Operations. 3°Ed. Prentice-Hall, Inc.,1993 [7] - Gaskell D., An Introduction to transport phenomena in Materials engineering, Ed. Macmillan, 1992. [8] - Muller H.G., Introducción a la Reología de los Alimentos, Ed. Acribia, Zaragoza (España), 1973 |
X - Bibliografia Complementaria |
---|
[1] - Knudsen J.G. Katz D.L., Fluid dinamycs and Heat Transfer, Ed. Mc. Graw Hill, 1958.
[2] - Hirschfelders, Curtiss C., Bird B. Molecular Theory of Gases and Liquids. Ed. Wiley & Sons. [3] - Reid R.C., Prausntz J.M., Sherwood T.K., The properties of Gases and Liquid, Ed. Mc. Graw Hill, 1977. [4] - Earle R.L., Ingeniería de los Alimentos- Las operaciones básicas aplicadas a la Tecnológia de los alimentos. Ed. Acribia, Zaragoza (España), 1979. |
XI - Resumen de Objetivos |
---|
Impartir conocimientos básicos del tema denominado, “Fenómenos de Transporte”, mediante el tratamiento del Transporte de Cantidad de Movimiento, Transporte de Energía y Transporte de Materia. Enseñar el modo de predecir los coeficientes de cada una de estas propiedades. Aplicar la transferencia de cantidad de movimiento, calor y materia a través de una interfase, que implique un cambio en la composición de soluciones y mezclas, como son las operaciones de transferencia de masa. Desarrollar expresiones adimensionales utilizadas en el cambio de escala
|
XII - Resumen del Programa |
---|
Transporte: Generalidades. Ecuación de continuidad. Transporte de Cantidad de movimiento: predicción del Coeficiente de Cantidad de Movimiento. Ecuaciones Generales. Ley de Newton. Transporte de Energía: Ecuación de Energía Mecánica y Ecuación general de conservación. Convección y Conducción de calor. Predicción del Coeficiente de Difusión de Energía. Transporte de Materia: Ecuación de continuidad para mezclas binarias. Predicción del coeficiente de difusión de Materia. Transferencia Interfacial de Cantidad de Movimiento calor y Materia. Factor de fricción (Cantidad de movimiento); Coeficiente de Transferencia de Calor (Energía) y Coeficiente individuales y totales para la Transferencia de Materia. Analogías. Análisis dimensional: Adimensionalización de las Ecuaciones de Variación.
|
XIII - Imprevistos |
---|
Se solucionarán en la medida que se presenten.
|
XIV - Otros |
---|
|