Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2008)
(Programa en trámite de aprobación)
(Programa presentado el 10/07/2008 11:56:36)
I - Oferta Académica
Materia Carrera Plan Año Periodo
CALCULO II PROFESORADO EN FISICA 2008 1° cuatrimestre
CALCULO II ING.EN MINAS 007/08 2008 1° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
OLIVERA, ESTELA ZULMA Prof. Responsable P.Adj Exc 40 Hs
BARROZO, MARIA FERNANDA Responsable de Práctico A.1ra Semi 20 Hs
GRAU, CRISTIAN RAUL Responsable de Práctico A.2da Simp 10 Hs
RUBIO DUCA, ANA Responsable de Práctico A.1ra Exc 40 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 3 Hs. 5 Hs.  Hs. 8 Hs. 1º Cuatrimestre 10/03/2008 20/06/2008 15 120
IV - Fundamentación
El programa responde a los requerimientos de las diferentes carreras para las cuales se dicta, y el enfoque teórico-práctico, con demostraciones formales y aplicaciones, tiene como objetivo desarrollar las distintas capacidades necesarias para la formación de un buen profesional.
V - Objetivos / Resultados de Aprendizaje
- Aprender los conceptos detallados en el programa, y las relaciones que entre ellos existen.
- Ser capaces de reconstruir y analizar una demostración formal.
- Ser capaces de demostrar resultados nuevos.
- Saber usar los conocimientos teóricos para resolver problemas de aplicación.
VI - Contenidos
UNIDAD 1: VECTORES , GEOMETRIA EN EL ESPACIO Y FUNCIONES VECTORIALES
Sistemas de coordenadas en tres dimensione. Vectores, operaciones. Producto punto. Producto cruz. Ecuaciones de rectas y planos. Cilindros y superficies cuadráticas. Coordenadas cilíndricas y esféricas.
Funciones vectoriales y curvas en el espacio. Derivadas e integrales de funciones vectoriales. Longitud de arco.
UNIDAD 2: DERIVADAS PARCIALES
Funciones de varias variables: definición, dominio, rango, gráficas. Curvas de nivel. Límite y continuidad. Derivadas parciales: definición, interpretación gráfica. Derivadas de orden superior. Planos tangentes y aproximaciones lineales. Diferenciales. Regla de la cadena. Derivación implícita.
UNIDAD 3: DERIVADAS DIRECCIONALES Y VALORES EXTREMOS
Derivadas direccionales: definición, interpretación gráfica. Vector gradiente. Maximización de la derivada direccional. Planos tangentes a superficies de nivel. Importancia del gradiente. Valores máximos y mínimos locales y absolutos. Multiplicadores de Lagrange.
UNIDAD 4: INTEGRALES MULTIPLES
Integrales dobles sobre rectángulos. Regla del punto medio. Propiedades. Integrales iteradas. Teorema de Fubini. Integrales dobles sobre regiones generales. Propiedades de las integrales dobles. Integrales dobles en coordenadas polares. Aplicaciones de las integrales dobles. Area de una superficie. Integrales triples. Aplicaciones. Integrales triples en coordenadas cilíndricas y esféricas. Cambio de variables en integrales múltiples
UNIDAD 5: CALCULO VECTORIAL
Campos vectoriales. Campo vectorial gradiente. Integrales de línea. Integrales de línea de campos vectoriales. Teorema fundamental para integrales de línea. Independencia de trayectoria. Condiciones necesarias y/o suficientes para campos conservativos. Teorema de Green. Rotacional y divergencia: definición y teoremas relacionados. Formas vectoriales del teorema de Green. Superficies paramétricas y sus áreas. Integrales de superficies. Superficies orientadas. Integrales de superficies de campos vectoriales. Teorema de Stokes. Teorema de la divergencia

VII - Plan de Trabajos Prácticos
Los trabajos prácticos consistirán en la resolución de ejercicios en las horas destinadas a tal fin, y resolución de ejercicios propuestos fuera del horario establecido que luego podrán consultar.
VIII - Regimen de Aprobación
Sistema de regularidad
Asistencia al 75% de las clases prácticas.
Aprobación de dos evaluaciones parciales sobre temas de los prácticos, que se podrán lograr en primera instancia o en las respectivas recuperaciones o en la recuperación general, con un porcentaje no inferior al 60%.
Una vez obtenida la "regularidad en la asignatura", el alumno deberá aprobar un examen final en las fechas fijadas por la Universidad. Este examen podrá ser oral o escrito.
Para aprobar el examen final en caso de ser escrito, deberá responder el 55% de las preguntas realizadas correctamente para obtener la nota mínima.
Para alumnos libres:
Los alumnos libres deberán rendir un examen práctico escrito y en caso de aprobarlo, tendrán que rendir un examen teórico en ese mismo turno, cuya aprobación es idéntica a la de los alumnos regulares..
IX - Bibliografía Básica
[1] - CÁLCULO ( de una variable y multivariable)”, de James Stewart- Edit. International Thomson Editores.-4º edición
[2] “CÁLCULO VECTORIAL”, de J. Marsden y A. Tromba- Edit. Addison-Wesley Iberoamericana . 4º edición. 1998.
X - Bibliografia Complementaria
[1] “CALCULO” Tomo 2. R. Smith y R. Minton. Editorial Mc Graw Hill Interamericana S.A. 2001
[2] “CÁLCULO VARIAS VARIABLES” t. Finney. Editorial Pearson Educación. 9º edicion. 1999
XI - Resumen de Objetivos
OBJETIVOS DEL CURSO (no más de 200 palabras):
Lograr que el alumno aprenda los conceptos involucrados y cómo se relacionan entre sí. Además debe saber usar estas herramientas para resolver diferentes problemas de aplicación. Es importante también que sepa realizar demostraciones formales y/o intuitivas de teoremas o conjeturas nuevas o ya demostradas previamente.
XII - Resumen del Programa
PROGRAMA SINTETICO (no más de 300 palabras):
Se estudiará cálculo diferencial e integral de funciones de varias variables, se incluye además cálculo vectorial, para poder estudiar integrales de línea y de superficie..
XIII - Imprevistos
 
XIV - Otros