Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2023)
(Programa en trámite de aprobación)
(Programa presentado el 28/09/2023 17:13:04)
I - Oferta Académica
Materia Carrera Plan Año Periodo
MATEMATICA I LIC.EN CS.GEOL. 02/22 2023 2° cuatrimestre
ALGEBRA I ING.ELECT.O.S.D 13/08 2023 2° cuatrimestre
ALGEBRA I PROF.TECN.ELECT 005/09 2023 2° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
LOPEZ ORTIZ, JUAN IGNACIO Prof. Responsable P.Adj Exc 40 Hs
MEDINA ALANIZ, JOHANA MICAELA Responsable de Práctico A.1ra Semi 20 Hs
ORDOÑEZ, MICAELA AILEN Auxiliar de Práctico A.2da Simp 10 Hs
SOLDERA RUIZ, MARIA VALENTINA Auxiliar de Práctico A.2da Simp 10 Hs
VEGA, MICAELA ESTEFANIA Auxiliar de Práctico A.1ra Simp 10 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 3 Hs. 5 Hs.  Hs. 8 Hs. 2º Cuatrimestre 07/08/2023 17/11/2023 15 120
IV - Fundamentación
El programa responde a los contenidos mínimos de las carreras para las cuales se dicta, y el enfoque teórico-práctico tiene como objetivo desarrollar distintas capacidades básicas en Álgebra.
Fundamentalmente aplicar los conceptos principales en diversos contextos y desarrollar técnicas básicas de razonamientos deductivos para resolver problemas. Además, se promueve la participación activa de los alumnos permitiendo, entre otras cosas, que expresen las dificultades que se les presentan en el proceso de aprendizaje. También se dan algunos conceptos básicos de Geometría en el plano y en el espacio; se trata de que los alumnos logren una interpretación geométrica de las distintas ecuaciones, sistemas de ecuaciones y sus respectivas soluciones. En algunos temas se seleccionan ejercicios en base a las aplicaciones, a fin de despertar el interés de los alumnos. Se utilizarán programas informáticos para acompañar el aprendizaje.
V - Objetivos / Resultados de Aprendizaje
Manejar las técnicas primarias de razonamiento en el Álgebra.
Manejar del lenguaje algebraico.
Usar los conocimientos teóricos para resolver problemas de aplicación.
Aplicar las herramientas adquiridas en la aprehensión de otras disciplinas.
Conocer las interpretaciones geométricas de los sistemas de ecuaciones lineales
VI - Contenidos
Unidad 1: Números Complejos
Definición de Números Complejos en forma binómica o canónica. Operaciones: Suma y resta; multiplicación;
conjugado-propiedades, inverso multiplicativo y cociente. Representación geométrica. Número complejo en Forma
Polar o trigonométrica y en forma exponencial. Operaciones: multiplicación y cociente. Potencia Teorema de
Moivre. Raíces. Cálculo y representación gráfica. Resolución de ecuaciones algebraicas. Problemas de aplicación.

Unidad 2: Lógica
Proposiciones simples y compuestas. Tablas de verdad. Operaciones con proposiciones: negación, conjunción,
disyunción, condicional y bicondicional. Implicación, implicaciones asociadas. Condiciones necesarias y
suficientes. Leyes lógicas. Funciones proposicionales. Cuantificadores. Razonamientos.

Unidad 3: Razonamiento
Introducción Métodos de demostración: el directo, el contrarrecíproco, el absurdo. Números. Números naturales.
Progresiones geométricas y aritméticas. Principio de Inducción Matemática. Problemas de aplicación.
Demostración a través de propiedades. Razonamientos equivalentes. Demostración de leyes lógicas.

Unidad 4: Conjuntos
Conjuntos. Pertenencia, inclusión e igualdad. Cardinalidad. Operaciones: unión, intersección, complemento y
diferencia simétrica. Diagramas de Venn. Conjunto de Partes. Números combinatorios y Binomio de Newton.
Producto cartesiano. Problemas de aplicación.

Unidad 5: Vectores
Vectores en el espacio bidimensional y tridimensional. Enfoque geométrico y enfoque analítico. Operaciones con
vectores. Vectores en la base canónica. Suma y multiplicación por un escalar. Productos escalar y vectorial.
Propiedades. Angulo entre vectores, longitud y distancia. Proyección ortogonal. . Producto vectorial. Propiedades
y aplicaciones.

Unidad 6: Geometría del Espacio
Rectas en el plano y en el espacio. Ecuaciones vectorial y paramétrica. Planos. Ecuaciones vectorial, paramétrica,
simétrica y normal. Representaciones gráficas. Distancia de un punto a un plano. Posiciones relativas de rectas y
planos: enfoque geométrico.

Unidad 7: Sistemas de Ecuaciones Lineales
Ecuaciones e inecuaciones. Sistemas de ecuaciones lineales. Sistemas homogéneos. Sistemas equivalentes.
Método de Gauss, resolución usando matrices. Clasificación, Interpretación geométrica. Forma matricial de un
sistema. Aplicaciones, Posiciones relativas de rectas y planos: enfoque analítico. Otros problemas de aplicación.

Unidad 8: Matrices
Definiciones y consideraciones generales: matriz, matriz cuadrada, igualdad, matriz transpuesta. Operaciones con
matrices: multiplicación escalar, suma, producto matricial. Propiedades. Matrices cuadradas. Matriz inversa y sus
propiedades.

VII - Plan de Trabajos Prácticos
Los trabajos prácticos consisten principalmente en la resolución de problemas que requieran la aplicación de los
conceptos desarrollados en la teoría.
VIII - Regimen de Aprobación
I: Sistema de regularidad
Se tomarán dos exámenes parciales, cada uno de los cuales contará con dos instancias de recuperación. En cada
examen parcial estarán indicados algunos ejercicios básicos relacionados con contenidos mínimos de la materia
de acuerdo a las carreras que la cursan. Se aprobará cada parcial con un puntaje total no inferior a 60 % y la
resolución correcta de estos ejercicios indicados.
La condición de alumno regular se obtiene aprobando cada uno de los dos exámenes parciales (en
cualquiera de sus instancias) y deben tener al menos un 70% de presentes en las clases prácticas.

II: Sistema de Aprobación por promoción
La materia puede aprobarse por medio de una promoción sin rendir examen final. Para esto, el alumno deberá aprobar cada uno de los exámenes parciales teórico-práctico en cualquiera de sus instancias con un puntaje no menor al 70% (en cualquiera de sus instancias), la resolución correcta de los ejercicios indicados y debe tener al menos un 80% de presentes en las clases prácticas.

III: Sistema de Aprobación de la materia sin promoción
Los estudiantes que hayan obtenido la condición de regular y no hayan promocionado tendrán que aprobar la
materia a través de un examen final Teórico- Práctico de forma escrita y/o oral según se disponga en la materia,
en las fechas que el calendario académico universitario prevé para esta actividad. Este examen puede tener
dos instancias: una escrita y otra oral.

IV: Sistema de aprobación de la materia mediante examen libre
Los estudiantes que no obtuvieron la condición regular pueden aprobar la materia mediante un examen libre
rendido en las fechas de examen. El mismo consiste en una parte práctica escrita y/ o oral donde se toman todas
las unidades y una parte teórica escrita y/ o oral.
IX - Bibliografía Básica
[1] Álgebra y Geometría Analítica. P. Galdeano, J. Oviedo y M. Zakowicz. Editorial Neu. Año 2017.
X - Bibliografia Complementaria
[1] Algebra y Trigonometría con Geometría Analítica. E. Swokowski y J. Cole. IX Edición. Editorial Thomson. Año1997.
[2] Álgebra I; A. O. Rojo; 18° edición, El Ateneo, 1996.
[3] Apuntes de Álgebra I; L. Cali, R. Martínez, A. Neme, L. Quintas, U.N.S.L, 2000.
[4] Algebra Lineal con Aplicaciones. Steven León. Mac Graw Hill. Año 1999.
[5] Calculo Vectorial. Marsden J. y Tromba A. IV edición. Ed. Addison Wesley Longman, Pearson. Año 1998.
[6] Matemática I. M. de Guzmán y J. Colera. Editorial Anaya. Año 1989.
[7] An Introduction to University Level Mathematics; A. Lauder; Lecture Notes, University of Oxford, 2017.
[8] Álgebra, trigonometría y geometría analítica; D. G. Zill, J. M. Dewar; 3° edición, McGraw-Hill/Interamericana, 2012.
XI - Resumen de Objetivos
Manejar las técnicas primarias de razonamiento en el Álgebra.
Manejar del lenguaje algebraico.
Usar los conocimientos teóricos para resolver problemas de aplicación.
Aplicar las herramientas adquiridas en la aprehensión de otras disciplinas.
Conocer las interpretaciones geométricas de los sistemas de ecuaciones lineales
XII - Resumen del Programa
Números Complejos; Lógica; Razonamiento Deductivo; Conjuntos; Vectores; Geometría Analítica; Sistemas de Ecuaciones Lineales; Matrices
XIII - Imprevistos
Toda modificación será acordada con y comunicada al estudiantado e informada a Secretaría Académica.
XIV - Otros
Dirección de email: jnlopezortiz@gmail.com