Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas Área: Matematicas |
I - Oferta Académica | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
II - Equipo Docente | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
III - Características del Curso | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
IV - Fundamentación |
---|
El Álgebra Lineal provee a los tecnólogos e ingenieros los conocimientos necesarios para manejar y aplicar los conceptos del álgebra matricial en el planteamiento y solución de sistemas de ecuaciones lineales o problemas relacionados, todos ellos de habitual utilización en la actuación profesional. El álgebra lineal es una herramienta fundamental para el desarrollo de la tecnología, aplicada en el área de la Ingeniería.
|
V - Objetivos / Resultados de Aprendizaje |
---|
Conducir al estudiante al aprendizaje de conceptos básicos de Álgebra Lineal, teniendo siempre en cuenta la geometría y aplicación de los mismos.
Utilizar los resultados teóricos del Álgebra Lineal para la resolución de ejercicios prácticos. Tener un manejo fluido de sistemas de ecuaciones lineales y sus propiedades Reconocer las estructuras de espacios y subespacios vectoriales. Darles las herramientas necesarias para que puedan identificar y relacionar los diferentes conceptos, identificando las clasificaciones y buscando sus propios ejemplos. Comprender el concepto de transformación lineal, su importancia y su manejo a través de matrices. |
VI - Contenidos |
---|
UNIDAD 1: Determinantes y matrices
Matrices. Operaciones con matrices. Propiedades. matriz identidad. Matriz transpuesta. Inversa de una matriz. Noción de Determinante. Propiedades. Desarrollo por cofactores y aplicaciones. Matriz adjunta. UNIDAD 2: Espacios vectoriales reales. Definición de espacios vectoriales. Ejemplos. Subespacios vectoriales. Combinación lineal de vectores. Independencia lineal. Definición de conjunto de generadores de un espacio vectorial. Bases y dimensión. Espacio nulo y nulidad de una matriz. Relación entre sistemas lineales no homogéneos y sistemas homogéneos. Rango de una matriz, espacios filas y columnas. Rango y singularidad. Aplicaciones del rango a los sistemas lineales no homogéneo Coordenadas y cambio de base. UNIDAD 3: Ortogonalidad. Definición de conjuntos ortogonales y ortonormales en . Bases ortogonales y ortonormales. Complementos ortogonales. Suma directa de subespacios vectoriales. Relaciones entre los espacios vectoriales fundamentales asociados con una matriz. Proyecciones y aplicaciones. UNIDAD 4: Valores propios, vectores propios y diagonalización. Definición. Polinomio característico. Espacios propios. Matrices semejantes (similares) Diagonalización. Aplicaciones. Diagonalización de matrices simétricas. Definición de forma cuadrática real. Teorema de los ejes principales. UNIDAD 5: Transformaciones lineales y matrices. Definición y ejemplos. Imagen y Núcleo de una transformación lineal. La matriz de una transformación lineal. Cambio de bases. Revisión de la diagonalización, de la semejanza y ortogonalización de matrices. Aplicaciones: Geometría Analítica y Programación Lineal. |
VII - Plan de Trabajos Prácticos |
---|
En cada Unidad se trabajarán trabajos prácticos, de acuerdo a los diferentes temas, con ejercicios acorde a lo desarrollado en la teoría. Los trabajos prácticos son:
Trabajo Practico 1: Matrices Trabajo Practico 2: Determinantes Trabajo Practico 3: Espacios y Subespacios Trabajo Practico 4: Independencia Lineal - Bases y dimensión Trabajo Practico 5: Sistema Homogéneo - Rango de matrices. Aplicaciones Trabajo Practico 6: Coordenadas Y Cambio de base Trabajo Practico 7: Bases ortogonales y Complementos Ortogonales Trabajo Practico 8: Autovalores y autovectores Trabajo Practico 9: Diagonalización y diagonalización de Matrices simétricas Trabajo Practico 10: Transformación Lineal- Núcleo e Imagen Trabajo Practico 11: Matriz de una transformación lineal Se trabajará también con la herramienta virtual MATRIXCALC (https://matrixcalc.org/es/) para poder verificar los cálculos y que darles a los estudiantes una herramienta de cálculo rápida. |
VIII - Regimen de Aprobación |
---|
I: Sistema de regularidad El estudiante obtendrá la regularidad de la materia cumpliendo las siguientes pautas: Presencialidad: el estudiante debe tener el 70% de presencialidad del total de las clases prácticas y teóricas. Evaluaciones parciales: Se tomarán dos evaluaciones parciales, ambas con dos recuperaciones. Cada Evaluación se aprueba con 60% y además se deberá tener resuelto de manera correcta ejercicios que contienen temas básicos de la materia. Estos ejercicios estarán indicados en cada evaluación. II: Sistema de Aprobación por promoción Los Estudiantes pueden optar por aprobar la materia con el sistema de promoción. Este consiste en: - Aprobar cada examen parcial con al menos 70% en su primera instancia o bien en su primera recuperación. Entendiendo esto con que debe aprobar, en cada parcial, cada uno de los temas básicos de la materia con al menos 70% - Aprobar un examen Integrador III: Sistema de Aprobación de la materia Los estudiantes que hayan obtenido la condición de regular tendrán que aprobar la materia a través de un examen final Teórico- Práctico de forma escrita y/o oral según se disponga en la materia, en las fechas que el calendario académico universitario prevé para esta actividad. Este examen puede tener dos instancias: una escrita y otra oral. IV.- Para alumnos libres Esta materia se podrá rendir libre. |
IX - Bibliografía Básica |
---|
[1] [1] Algebra Lineal. B. Kolman yD. Hill. Prentice Hall Continental Octava edición (2006)
[2] [2] Algebra Lineal. K. Hoffman y R. Kunze. Prentice Hall Hispanoamericana S.A.,México, 1973. Primera edición. |
X - Bibliografia Complementaria |
---|
[1] [1] Introducción al Algebra Lineal. Howard Anton. Ed.Limusa
[2] [2] Precalculo, Michael Sullivan, Prentice Hall, Cuarta edición (1997) |
XI - Resumen de Objetivos |
---|
Conducir al estudiante al conocimiento y aplicación de las ideas básicas del Álgebra Lineal haciendo énfasis en la utilización los resultados teóricos para la resolución de ejercicios prácticos y alcanzar un buen manejo de matrices y sistemas de ecuaciones lineales.
|
XII - Resumen del Programa |
---|
UNIDAD 1: Determinantes y matrices.
UNIDAD 2: Espacios vectoriales reales. UNIDAD 3: Ortogonalidad. UNIDAD 4: Transformaciones lineales y Matrices. UNIDAD 5: Valores propios, vectores propios y diagonalización |
XIII - Imprevistos |
---|
|
XIV - Otros |
---|
|