Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2022)
I - Oferta Académica
Materia Carrera Plan Año Periodo
PROBABILIDAD Y ESTADISTICA PROF.MATEM. 21/13 2022 1° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
BONIFACIO, AGUSTIN GERMAN Prof. Responsable P.Adj Exc 40 Hs
FONTANA, MARIA CECILIA Auxiliar de Práctico A.1ra Simp 10 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 3 Hs. 4 Hs.  Hs. 7 Hs. 1º Cuatrimestre 21/03/2022 24/06/2022 14 90
IV - Fundamentación
La probabilidad y la estadística juegan un papel primordial en los avances de la ciencia y la tecnología, al proporcionar herramientas para analizar variabilidad, determinar relaciones entre variables, diseñar experimentos, mejorar predicciones y toma de decisiones en situaciones de incertidumbre.
El programa responde a los contenidos mínimos de las carreras para las cuales se dicta y el enfoque incluye clases teóricas y prácticos de aula con énfasis en demostraciones formales y aplicaciones.
V - Objetivos / Resultados de Aprendizaje
1. Conocer conceptos y técnicas de Probabilidad y Estadística, y saber aplicarlos en la resolución de problemas.
2. Desarrollar destreza en el cálculo de probabilidades.
3. Que los alumnos sean capaces de entender y desarrollar demostraciones formales.
VI - Contenidos
Problemas estadísticos. Experimentos aleatorios y aleatoriedad. Población y muestra. Concepto de estadística descriptiva e inferencial. Tipos de datos. Representaciones gráficas. Tablas de frecuencias y de frecuencias relativas. Histogramas. Medidas de centralización y dispersión poblacionales y muestrales. Teorema de Tchebychev.


Eventos (sucesos) y familias admisibles de eventos. Distribución de probabilidad. Propiedades. Distribución de igual probabilidad. Noción clásica de probabilidad. Elementos de análisis combinatorio. Noción frecuencial de probabilidad. Probabilidades condicionales. Interpretación frecuencial. Propiedades. Teorema de la probabilidad total. Fórmula de Bayes. Regla de multiplicación. Independencia de eventos.


Distribuciones y variables aleatorias discretas. Funciones de densidad y distribución. Media y varianza. Ejemplos de distribuciones discretas:Bernoulli, binomial, geométrica, Poisson.


Distribuciones y variables aleatorias continuas. Función de densidad y distribución. Media y varianza. Distribución normal. Cálculo de probabilidades. Aproximación normal para la distribución binomial: teorema de DeMoivre-Laplace.


Otros ejemplos de distribuciones continuas: distribuciones uniforme y exponencial.


Distribuciones muestrales. Teorema Central del Límite. Distribución de la media y la varianza muestral. Distribución de: (i) proporción muestral, (ii) diferencia de medias muestrales, y (iii) diferencia de proporciones muestrales.


Estimadores. Estimadores puntuales para la media y la varianza. Intervalo de confianza para la media poblacional para muestras grandes. Intervalo de confianza para: (i) proporción poblacional, (ii) diferencia de medias, y (iii) diferencia de proporciones poblacionales.


Pruebas de hipótesis. Elementos de una prueba. Prueba de hipótesis para la media poblacional. Prueba de hipótesis para: (i) proporción poblacional, (ii) diferencia de medias, y (iii) diferencia de proporciones poblacionales.


Regresión lineal: modelo probabilístico lineal simple. Método de mínimos cuadrados. Cálculo y estimación para la s2. Inferencia sobre parámetros del modelo. Estimación. Coeficiente de correlación.


Tópicos adicionales. Suma y producto de variables aleatorias. Introducción a los procesos estocásticos (cadenas de Markov). Distribución conjunta de variables aleatorias (correlación, autocorrelación y covarianza). Aplicación: procesamiento de señales.


VII - Plan de Trabajos Prácticos
Los prácticos consistirán en la resolución y presentación escrita y oral de ejercicios.
VIII - Regimen de Aprobación
Se propone un régimen de promoción. Se tomarán dos (2) exámenes parciales de carácter teórico-práctico. Cada uno de los exámenes tendrá dos recuperaciones.
• Para promocionar el alumno deberá:
1. Obtener al menos 7 (siete) en cada parcial teórico-práctico (o su recuperación).
3. Rendir un examen integrador y aprobarlo con al menos 7 (siete). La nota final surgirá del promedio entre las notas de los parciales y el integrador.
• El alumno que no promocione, pero que haya obtenido al menos 6 (seis) en los exámenes parciales prácticos (o sus recuperaciones), regularizará la materia y deberá rendir un examen teórico en los turnos previstos en el calendario académico.
• El alumno que obtenga menos de 6 (seis) en algún examen parcial y sus recuperatorios se considerará como libre. Los alumnos libres deberán rendir un examen práctico y uno teórico en los turnos previstos en el calendario académico. La reprobación de alguno de ellos es eliminatoria. En caso de aprobar ambos, la nota surgirá como un promedio de las dos notas obtenidas.
IX - Bibliografía Básica
[1] Mendenhall W., Sheaffer R. y Wackerly D., Estadística Matemática con Aplicaciones, Grupo Editorial Iberoamérica, 1994.
X - Bibliografia Complementaria
[1] Estadística para Administradores, W. Mendenhall, Grupo Editorial Iberoamérica, 1990.
[2] Cesco J. C., Apuntes de Probabilidad y Estadística, 1991.
[3] Ross S., A First Course in Probability, Macmillan Publishers, 1988.
XI - Resumen de Objetivos
1. Conocer conceptos y técnicas de Probabilidad y Estadística, y saber aplicarlos en la resolución de problemas.
2. Desarrollar destreza en el cálculo de probabilidades.
3. Que los alumnos sean capaces de entender y desarrollar demostraciones formales.
XII - Resumen del Programa
Estadística descriptiva e inferencial. Población y muestras. Probabilidades. Distribuciones discretas y continuas. Distribución normal. Teorema Central del Límite. Estimación puntual y por intervalos de confianza. Pruebas de hipótesis. Regresión lineal. Correlación.
XIII - Imprevistos
El dictado de la materia será presencial, salvo que la situación sanitaria y epidemiológica no lo permita. La materia utiliza la plataforma Google Classroom, en la cual se encuentran disponibles presentaciones (slides) y la bibliografía obligatoria. En caso de no poder continuar con el dictado presencial, se les informará con tiempo a los alumnos y se continuará con el dictado de manera virtual a través del Classroom de la materia.

El presente programa puede presentar ajustes. Toda modificación será acordada con el estudiantado e informada a Secretaría Académica.

Mail de contacto: agustinbonifacio@gmail.com
XIV - Otros