Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2021)
I - Oferta Académica
Materia Carrera Plan Año Periodo
ALGEBRA I ING. EN COMPUT. 28/12 2021 2° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
SPEDALETTI, JUAN FRANCISCO Prof. Responsable P.Asoc Exc 40 Hs
GONZALEZ, MARIA CECILIA Responsable de Práctico A.1ra Exc 40 Hs
ORDOÑEZ, MICAELA AILEN Auxiliar de Práctico A.2da Simp 10 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 2 Hs. 4 Hs.  Hs. 6 Hs. 2º Cuatrimestre 23/08/2021 26/11/2021 14 90
IV - Fundamentación
El programa responde a los contenidos mínimos de las carreras para las cuales se dicta, y el enfoque teórico-práctico, con
demostraciones formales y aplicaciones, tiene como objetivo desarrollar distintas capacidades básicas en álgebra,
fundamentalmente aplicar los conceptos principales en diversos contextos y desarrollar técnicas básicas de demostraciones
con razonamientos deductivos. Además se promueve la participación activa de los alumnos permitiendo, entre otras cosas,
que expresen las dificultades que se les presentan en el proceso de aprendizaje. También se dan algunos conceptos básicos de
geometría en el plano y en el espacio; se trata de que los alumnos logren una interpretación geométrica de las distintas
ecuaciones, sistemas de ecuaciones y sus respectivas soluciones. En algunos temas se seleccionan ejercicios en base a las
aplicaciones, a fin de despertar el interés de los alumnos.
V - Objetivos / Resultados de Aprendizaje
Manejar las técnicas primarias de razonamiento en el álgebra.
Manejar del lenguaje algebraico.
Usar los conocimientos teóricos para resolver problemas de aplicación.
Aplicar las herramientas adquiridas en la aprehensión de otras disciplinas.
Ser capaces de analizar una demostración formal y de demostrar resultados sencillos.
VI - Contenidos
Unidad 1: Lógica
Proposiciones simples y compuestas. Tablas de verdad. Operaciones con proposiciones: negación, conjunción, disyunción,
condicional y bicondicional. Implicación, implicaciones asociadas. Condiciones necesarias y suficientes. Leyes lógicas.
Funciones proposicionales. Cuantificadores.
Unidad 2: Razonamientos deductivos y Métodos de Demostración
Razonamientos deductivos válidos. Razonamiento Modus Ponens, Razonamiento Modus Tollens. Métodos de demostración:
Forma Directa, Contrarrecíproco y por reducción al absurdo., Principio de Inducción Matemática. Problemas de aplicación.
Unidad 3: Conjuntos
Conjuntos. Pertenencia, inclusión e igualdad. Cardinalidad. Operaciones: unión, intersección, complemento y diferencia
simétrica. Diagramas de Venn. Conjunto de Partes. Números combinatorios y Binomio de Newton. Producto cartesiano.
Problemas de aplicación.
Unidad 4: Números Complejos
Definición de Números Complejos en forma binómico o canónica. Operaciones: Suma y resta; multiplicación;
conjugado-propiedades, inverso multiplicativo y cociente. Representación geométrica. Número complejo en Forma Polar o
trigonométrica y en forma exponencial. Operaciones: multiplicación y cociente. Potencia Teorema de Moivre. Raíces.
Cálculo y representación gráfica. Resolución de ecuaciones. Problemas de aplicación.
Unidad 5: Vectores
Vectores en la base canónica. Suma y multiplicación por un escalar. Productos escalar y vectorial. Propiedades. Angulo entre
vectores, longitud y distancia. Proyección ortogonal.
Unidad 6: Geometría del Espacio
Rectas en el plano y en el espacio. Ecuaciones vectorial y paramétrica. Planos. Ecuaciones vectorial, paramétrica y normal.
Representaciones gráficas. Distancia de un punto a un plano. Posiciones relativas de rectas y planos: enfoque geométrico.
Unidad 7: Sistemas de Ecuaciones Lineales
Sistemas de ecuaciones. Sistemas homogéneos. Sistemas equivalentes. Método de Gauss, resolución usando matrices.
Clasificación, Interpretación geométrica. Forma matricial de un sistema. Aplicaciones, Posiciones relativas de rectas y
planos: enfoque analítico.
Unidad 8: Matrices
Matrices. Operaciones con matrices. Matriz inversa.

VII - Plan de Trabajos Prácticos
Los trabajos prácticos consistirán en resoluciones de ejercicios sobre los temas desarrollados en la teoría. La práctica será
evaluada en los exámenes parciales.
VIII - Regimen de Aprobación
1) Se establecen dos sistemas: regularidad y promoción sin examen
Regularidad:
- Para alcanzar la condición de alumno regular en la materia se deben aprobar el primer parcial o su recuperación y el segundo parcial o su recuperación, pudiéndose usar la recuperación general para recuperar el primer parcial, el segundo parcial o los dos juntos. en cualquiera de los casos se debe aprobar con nota mayor o igual a 6 y menor a 7.
- El alumno que obtenga la condición de alumno regular en la materia podrá aprobar la misma rindiendo un examen final teórico en los turnos de examen que establece la universidad.
Promoción sin examen:
- Se alcanza la condición de promoción con nota igual a 7 o superior en los parciales o sus recuperaciones.
- El alumno que alcance la condición de promoción aprueba la materia sin rendir examen final.
3) Evaluación: en los exámenes parciales se evaluará práctica y teoría.
4) El alumno que no alcance ni la condición de regular ni la condición de promoción quedará libre en la materia. En este caso deberá rendir toda la práctica y toda la teoría en el examen final para aprobar la materia.
IX - Bibliografía Básica
[1] Álgebra y Geometría Analítica. P. Galdeano, J. Oviedo y M. Zakowicz. Editorial Neu. Año 2017.
[2] Álgebra y Trigonometría con Geometría Analítica. E. Swokowski y J. Cole. IX Edición. Editorial Thomson. Año 1997.
X - Bibliografia Complementaria
[1] Apuntes de álgebra I. Apuntes elaborados por Lucia Cali, Ruth Martínez, Alejandro Neme, Luis Quintas. Año 2000.
[2] Algebra y Geometría. Apuntes elaborados por Ana Lucía Calí y Susana Zavala Jurado.
[3] Algebra Lineal con Aplicaciones. Steven León. Mac Graw Hill. Año 1999.
[4] Calculo Vectorial. Marsden J. y Tromba A. IV edición. Ed. Addison Wesley Longman, Pearson. Año 1998.
[5] Matemática I. M. de Guzmán y J. Colera. Editorial Anaya. Año 1989.
XI - Resumen de Objetivos
Manejar las técnicas primarias de razonamiento en el Algebra. Ampliar el campo de las herramientas específicas de la disciplina
XII - Resumen del Programa
Unidad 1: Lógica.
Unidad 2: Razonamientos deductivos y métodos de demostración. Inducción matemática.
Unidad 3: Conjuntos.
Unidad 4: Números complejos.
Unidad 5: Vectores.
Unidad 6: Geometría del espacio.
Unidad 7: Sistema de ecuaciones lineales.
Unidad 8: Matrices.
XIII - Imprevistos
Ante cualquier imprevisto la comunicación entre los alumnos y docentes será por medio de la página de la materia, el Classroom de la materia y/o por medio de mail con el profesor responsable: jfspedaletti@unsl.edu.ar.
De tener problemas de conexión para tomar las evaluaciones, se tiene previsto hacer una instancia extra de recuperación y una instancia extra de examen integrador presenciales en cuánto sea posible.
Este es un programa en fase no presencial.
XIV - Otros