Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas Área: Matematicas |
I - Oferta Académica | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
II - Equipo Docente | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
III - Características del Curso | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
IV - Fundamentación |
---|
Una de las principales razones para el estudio de los temas que conforman esta asignatura es la abundancia de aplicaciones que se encuentran en Ciencias de la Computación y en Matemáticas, en particular en las áreas de estructuras de datos, la teoría de lenguajes de computación y el análisis de algoritmos. Matemática Discreta es una asignatura que contiene temas de álgebra y teoría elemental de grafos que son necesarios para posteriores estudios en ambas carreras.
|
V - Objetivos / Resultados de Aprendizaje |
---|
Uno de los objetivos principales es que el alumno se familiarice con la forma de trabajo en matemática y alcance cierta experiencia en los distintos métodos de demostración y las técnicas de los métodos discretos. Se espera que, finalizado el curso, además de las habilidades técnicas el alumno haya adquirido los conocimientos básicos de cada uno de los temas del programa, los cuales se han planificado en el nivel más adecuado para su mejor aprovechamiento teniendo en cuenta que el estudio de la Matemática Discreta requiere cada vez mayor nivel de madurez matemática.
|
VI - Contenidos |
---|
Unidad 1: Inducción, Conjuntos y Funciones
Inducción Matemática: primer y segundo principio. Conjuntos. Funciones: inyectividad, suryectividad y biyectividad. Unidad 2: Relaciones Binarias I: Relaciones de Equivalencia Relaciones. Propiedades. Relaciones de equivalencia y particiones. Unidad 3: Relaciones Binarias II: Relaciones de Orden y Reticulados Relación de orden. Conjuntos parcialmente ordenados. Ordenes: dual, lineal, producto, lexicográfico. Diagrama de Hasse. Elementos extremos de conjuntos parcialmente ordenados. Cotas. Mínima cota superior. Máxima cota inferior. Lattices: Propiedades. Lattices: acotadas, distributivas y complementadas. Unidad 4: Relaciones de Recurrencia Relaciones de recurrencia. Resolución de relaciones de recurrencia. Relaciones de recurrencia homogéneas lineales. Unidad 5: Métodos de Conteo y Principio del Palomar Principio de la multiplicación. Principio de la suma. Permutaciones y combinaciones. Principio del palomar. Unidad 6: Grafos Grafos. Introducción. Representación de grafos. Matriz de adyacencia y de incidencia. Caminos y circuitos. Circuito de Euler. Grafo conexo. Longitud de camino. Algoritmo del camino más corto. Isomorfismos de grafos. Grafos planos. Caras. Fórmula de Euler. Redes. Unidad 7: Árboles Árbol. Ejemplos. Árboles de Jerarquización. Propiedades de Árboles. Árbol binario. Árboles generadores. Algoritmo de Prim. Ordenaciones. Árbol de juego. |
VII - Plan de Trabajos Prácticos |
---|
Los trabajos prácticos serán realizados a través de "tareas" en el contexto de una plataforma virtual. Se deberán entregar resoluciones de ejercicios seleccionados de manera periódica.
|
VIII - Regimen de Aprobación |
---|
Se tomarán dos exámenes parciales de carácter práctico, con sus respectivas recuperaciones y una recuperación general. La aprobación se consigue con un porcentaje no inferior al 60%.
Un alumno obtiene la condición de regular si aprueba cada parcial, su recuperación o la recuperación general con un porcentaje no inferior al 60%. En caso de quedar regular, el alumno deberá rendir un examen final, que podrá ser escrito u oral, para aprobar la materia. Un alumno obtiene la condición de promoción si: (i) aprueba cada parcial o su recuperación con un porcentaje no inferior al 70%, (ii) entrega todas las actividades prácticas en tiempo y forma y (iii) aprueba con un porcentaje no inferior al 70% un examen integrador. En caso de promocionar, el alumno obtendrá como nota final el promedio de las notas de los parciales y el integrador. Un alumno libre deberá rendir un examen práctico escrito y, en caso de aprobarlo, tendrá que rendir un examen teórico en ese mismo turno, cuyas condiciones de aprobación son idénticas a las de los alumnos regulares. |
IX - Bibliografía Básica |
---|
[1] [1] - “ MATEMÁTICAS DISCRETAS”, Richard JOHNSONBAUGH. Grupo Editorial Iberoamérica
[2] [2] - “ESTRUCTURA DE MATEMATICAS DISCRETAS PARA LA COMPUTACIÓN”. KOLMAN-BUSBY. [3] Editorial Prentice-Hall.- |
X - Bibliografia Complementaria |
---|
[1] [1] - “MATEMATICAS DISCRETAS”, ROSS – WRIGTH . Editorial. Prentice Hall
[2] [2] - “ÁLGEBRA LINEAL CON APLICACIONES”, Steven LEON. Compañía Editorial Continental [3] [3] - “MATEMÁTICAS ESPECIALES PARA COMPUTACIÓN”, GARCÍA VALLE. Editorial Mac Graw Hill [4] [4] - “MATEMÁTICA DISCRETA Y COMBINATORIA”, GRIMALDI. Editorial Adisson W. Longman |
XI - Resumen de Objetivos |
---|
Uno de los objetivos del curso es que el alumno se familiarice con la forma de trabajo en matemática y alcance cierta experiencia en los métodos de demostración y en las técnicas de los métodos discretos. Se espera que, finalizado el curso, además de las habilidades técnicas el alumno haya adquirido los conocimientos básicos de cada uno de los temas del programa desarrollado, los cuales han sido planificados en el nivel más adecuado para su mejor aprovechamiento teniendo en cuenta que el estudio de la Ciencia de la Computación requiere cada vez mayor nivel de madurez matemática.
|
XII - Resumen del Programa |
---|
Unidad 1: Inducción, conjuntos y funciones
Unidad 2: Relaciones binarias I: relaciones de equivalencia Unidad 3: Relaciones binarias II: relaciones de orden y reticulados Unidad 4: Relaciones de recurrencia Unidad 5: Métodos de conteo y principio del palomar Unidad 6: Grafos Unidad 7: Árboles |
XIII - Imprevistos |
---|
Debido a la pandemia de COVID-19 se han tomado las siguientes medidas:
1. La materia se dicta de forma virtual a través de la plataforma Google Classroom (https://classroom.google.com/c/MzgwOTE1OTA2Nzg0?cjc=bixpbyi), en la cual se encuentran disponibles presentaciones (slides) y videos de las clases, además de la bibliografía obligatoria. 2. Las actividades prácticas se realizan mediante "tareas" de Google Classroom que los alumnos deben entregar periódicamente a través de la plataforma. Se realizan periódicamente clases de consulta virtuales. 3. Los exámenes parciales se tomarán de manera PRESENCIAL. 4. Para regularizar y promocionar la materia no se tendrán en cuenta aspectos relativos a las asistencia a clase. 5. Correo de contacto: agustinbonifacio@gmail.com |
XIV - Otros |
---|
|