Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ingeniería y Ciencias Agropecuarias
Departamento: Ingeniería
Área: Tecnología
(Programa del año 2021)
(Programa en trámite de aprobación)
(Programa presentado el 25/03/2021 12:43:18)
I - Oferta Académica
Materia Carrera Plan Año Periodo
Resistencia de Materiales ING.ELECTROMECÁNICA Ord.20/12-16/15 2021 1° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
SANOGUERA, JOHANA LORENA Prof. Responsable P.Adj Semi 20 Hs
GIAMPIETRO, MARIANO Responsable de Práctico JTP Semi 20 Hs
AGUERREBERRY, RAUL ENRIQUE Auxiliar de Práctico A.1ra Semi 20 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
75 Hs. 2 Hs. 3 Hs.  Hs. 5 Hs. 1º Cuatrimestre 05/03/2021 08/07/2021 15 75
IV - Fundamentación
Resistencias de los Materiales, se dicta en Tercer año, de modo que el alumno cuente con los conocimientos básicos necesarios para entender la asignatura y poder aportarle los conceptos y herramientas básicas de la materia.
La resistencia de los materiales comprende el estudio del comportamiento de los sólidos sometidos a cargas exteriores y establece las relaciones entre las cargas exteriores aplicadas, sus efectos en el interior de los sólidos y las deformaciones que en ellos se producen.
La enseñanza de la Resistencia, tiene como misión fundamental, el desarrollo de la capacidad, para predecir los efectos de las fuerzas.
El fin del estudio de la Mecánica es predecir a través del cálculo el comportamiento de los componentes y sistemas en los que intervienen fuerzas y movimientos. La predicción satisfactoria en el diseño técnico, exige una formulación precisa de los problemas con ayuda de un doble proceso mental de conocimiento físico y razonamiento matemático. Este proceso de adaptación del modelo simbólico a su prototipo físico, es sin duda alguna, una de las experiencias más valiosas del estudio de la ingeniería, que es lo que se trata de desarrollar en este curso de Resistencia.
V - Objetivos / Resultados de Aprendizaje
Mediante el desarrollo de la materia, se pretende brindar al alumno una formación básica sobre la resistencia de materiales que le permita interpretar el comportamiento mecánico de los materiales en el interior de una pieza, determinar la forma y dimensiones de un elemento estructural, calcular las deformaciones que el elemento sufrirá cuando se encuentre sometido a distintos tipos de solicitaciones, etc.

El estudiante de ingeniería a partir del desarrollo de los problemas presentados en clases en combinación con problemas de aplicación real, podrá analizar la situación con base teórica y profesional y podrá combinar satisfactoriamente la teoría y la práctica para desarrollar el análisis de nuevas estructuras, maquinas, dispositivos y procesos en su quehacer profesional.

A través del desarrollo de la Resistencia, se generará en el estudiante la habilidad de poder aplicar los conceptos desarrollados y resolver problemas reales, originados por diseños, implementaciones de tecnología y/o fabricaciones deficitarias, mediante el diseño o rediseño de elementos de maquinarias, para poder asegurar la confiabilidad y eficiencia de los equipos bajo la supervisión del futuro profesional.
VI - Contenidos
1- TRACCIÓN Y COMPRESIÓN:
Tracción y compresión por debajo del límite de elasticidad. Elasticidad. Ley de Hooke. Diagrama de tracción. Tensión de Trabajo. Tensiones y deformaciones producidas en una barra producida por su propio peso. Problemas elásticamente indeterminados en tracción y compresión. Tensiones iniciales y térmicas.
Energía de deformación. Cilindros de pared delgada.

2- TORSION:
Torsión de un eje circular. Relación entre momento torsor y tensiones tangenciales. Angulo de torsión. Torsión de árboles huecos. Cálculo en función de la potencia. Miembros a torsión estáticamente indeterminados. Energía de deformación por torsión.

3- TENSIONES EN VIGAS:
flexión pura de barras primáticas. Relación entre momento flector y la curvatura de una viga. La tensión cortante en la flexión. Sección rectangular. Tensiones tangenciales en secciones no rectangulares. Distribución de los esfuerzos cortantes en vigas. Flexiónoblicua. Flexión compuesta. Determinación del eje neutro. Distribución de tensiones normales. Núcleo de la sección. Energía de deformación en la flexión.

4- DEFORMACIONES DE LAS VIGAS CARGADAS TRANSVERSALMENTE: ecuación diferencial de la elástica.
Relaciones entre curvatura, rotación y elástica. Método de la doble integración. Viga conjugada. Estructuras estáticamente indeterminadas. Método de superposición. Método del momento de área. Efecto de la fuerza cortante en la deformación de las vigas.

5- ANÁLISIS DE TENSIONES Y DEFORMACIONES:
Variación de la tensión en la extensión y compresión simple al considerar secciones oblicuas al eje de la barra. Estado de esfuerzo en un punto. Tensiones y planos principales. Esfuerzo plano. Ejes y esfuerzos principales. El círculo de Mohr para tensiones combinadas. Tensión cortante pura.

6- SOLICITACIONES COMBINADAS:
Piezas sometidas a esfuerzos axiles y torsión. Piezas solicitadas por torsión y flexión combinadas. Tensiones máximas.

7- TEORÍA DE COLUMNAS O INESTABILIDAD POR PANDEO:
Cargas excéntricas en piezas esbeltas y en uno de los planos principales. Carga crítica. Tensión crítica. Proyecto de columnas. La columna de Euler. Efectos de restricción en los extremos. Fórmula de Euler para columnas muy esbeltas. Limitaciones de la fórmula de Euler. Carga excéntrica, fórmula de la secante.

VII - Plan de Trabajos Prácticos
Se resolverán problemas de aplicación de los temas del programa. Estos están agrupados de la siguiente manera:
1- Tracción y compresión por debajo del límite de elasticidad.
2- Torsión
3- Flexión y corte
4- Deformación de vigas cargadas transversalmente
5- El círculo de Mohr
6- Solicitaciones combinadas
7- Pandeo
VIII - Regimen de Aprobación
RÉGIMEN DE ALUMNOS REGULARES

Para rendir como alumno regular, se deberán cumplir los siguientes requisitos.

a) Tener una asistencia del 80% de los trabajos prácticos.

b) Tener aprobados los dos exámenes parciales, que tendrán una pregunta teórica y el resto práctica. Cada parcial tendrá dos instancias de recuperación.
Practica: Ejercicios de la misma complejidad que los resueltos en las clases prácticas.
Teórica: El alumno deberá explicar con sus palabras los conceptos teóricos que se pregunten.

c) Para aprobar los dos parciales o sus recuperaciones, deberán obtener nota de 7 puntos. Las recuperaciones podrán tomarse en días sábados o fuera del horario de cursado de práctica.

d) En el examen final el alumno deberá exponer sobre distintos temas para demostrar, el dominio alcanzado sobre la totalidad de los contenidos del curso, y su capacidad de construir una visión integral de los mismos. La calificación mínima es 4 puntos.


RÉGIMEN DE ALUMNOS NO REGULARES

La evaluación Final consistirá en dos partes:
a) Práctica: el alumno deberá resolver correctamente dos problemas integradores de distintos temas del programa de trabajos prácticos. Posteriormente fundamentará el método usado para la resolución. La práctica es eliminatoria.

b) Teoría: se elegirán tres temas del programa analítico a sorteo, que deberá exponer con soltura, y demostrar, el dominio alcanzado sobre la totalidad de los contenidos del curso. Con capacidad de construir una visión integral de los mismos. La calificación mínima es 4 puntos.


Ordenanza CS 32_19 Publicación de las Actividades Académicas de la Asignatura.
Ordenanza CS 13/03 Régimen Académico UNSL.
IX - Bibliografía Básica
[1] [1] RESISTENCIA DE MATERIALES (James M. Gere). Edic. 2011 - Ed. Parainfo
[2] [2] MECÁNICA DE MATERIALES. (Ferdinand Beer, Russell Johnston)- 5ta edición. ED. MC Graw Hill
[3] [3] RESISTENCIA DE MATERIALES. (Luis Ortiz Berrocal) - Edic. 2007. ED. Mc Graw Hill
X - Bibliografia Complementaria
[1] [1] MECÁNICA DE MATERIALES (Ruseell Hibbeler)- Edic. 2005. ED. Prentice Hall México.
[2] [2] RESISTENCIA DE MATERIALES I y II (S. Timoshenko) Edic. 1986. ED. Espasa Calpe.
[3] [3] CURSO SUPERIOR DE RESISTENCIAS DE MATERIALES (Freud B. Seelu & james O. Smith) Edic. 1986.
[4] [4] ED Nigar
[5] [5] MECÁNICA VECTORIAL PARA INGENIEROS "ESTÁTICA" (Ferdinand Beer/ E. Russell Johnstin, Jr. Edic.
[6] [6] Octava- ED Mc Graw Hill
[7] [7] MECÁNICA PARA INGENIEROS. (Russell C. Hibbeler) Edic 2006. Editorial CECSA
XI - Resumen de Objetivos
Dar al alumno, las bases fundamentales y un conocimiento de las principales aplicaciones prácticas para un ingeniero electromecánico.
XII - Resumen del Programa
CAPITULO 1: TRACCIÓN Y COMPRESIÓN
CAPITULO 2: TORSION
CAPITULO 3. TENSIÓN EN VIGAS
CAPITULO 4. DEFORMACIONES DE LAS VIGAS CARGADAS TRANSVERSALMENTE
CAPITULO 5. ANÁLISIS DE TENSIONES Y DEFORMACIONES
CAPITULO 6. SOLICITACIONES COMBINADAS
XIII - Imprevistos
En el caso de surgir excepcionalmente un problema que impida la presencialidad. El dictado podrá efectuarse de modo virtual a través de las diferentes plataformas virtuales.
XIV - Otros