Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas Área: Matematicas |
I - Oferta Académica | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
II - Equipo Docente | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
III - Características del Curso | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
IV - Fundamentación |
---|
Este curso se ubica en el segundo cuatrimestre del segundo año en el Plan de Estudio de la correspondiente carrera. Esto se debe a que utiliza como conocimientos previos los desarrollados en Cálculo I, Álgebra Lineal y Cálculo II, con el apoyo de conceptos que involucran fenómenos físicos para su aplicación. Todos los temas a tratar en el curso intentan dar fundamento teórico a posteriores modelos matemáticos representativos de fenómenos particulares, como así también analizar fenómenos y determinar modelos simplificados que los representen. También se pretende dar métodos de resolución de dichos modelos estándar.
|
V - Objetivos / Resultados de Aprendizaje |
---|
Modelar, resolver e interpretar problemas que involucren conceptos geométricos y físicos. Distinguir y aplicar con destreza los métodos de solución de ecuaciones diferenciales de primer y segundo orden.
Resolver ecuaciones diferenciales mediante el uso de un método operacional como la transformada de Laplace. Estudiar Series de Fourier para resolver e interpretar problemas que involucran fenómenos periódicos en la física y en sus aplicaciones en la ingeniería. Resolver algunas ecuaciones diferenciales parciales importantes de la física y la ingeniería. Aprender teoría de funciones complejas que es necesaria para resolver algunos problemas interesantes de conducción del calor, dinámica de fluidos , etc. |
VI - Contenidos |
---|
Unidad 1: Funciones Analíticas Complejas
Derivada de funciones complejas. Relación con la diferencial de una transformación de R2. Ecuaciones de Cauchy – Riemann. Funciones armónicas. Determinación de la conjugada. Funciones trascendentes. El logaritmo complejo. Integración. Teorema de Cauchy. Regla de Barrow. Ïndice de una curva. Existencia de primitivas. Teorema y fórmula de Cauchy. Serie de Taylor. Principio de identidad. Unidad 2: Ecuaciones Diferenciales Ordinarias Ecuaciones diferenciales de primer orden: Conceptos e ideas básicas. Ecuaciones diferenciales separables. Ecuaciones diferenciales exactas. Factor integrante. Campos direccionales, iteración. Existencia y unicidad de las soluciones. Ecuaciones diferenciales lineales de primer orden. Modelado: Fechamiento por carbono radiactivo. Ley de enfriamiento de Newton. Evaporación. Circuitos eléctricos. Unidad 3: Ecuaciones Diferenciales Lineales de Segundo Orden Operadores diferenciales lineales. Ecuación lineal homogénea. Dimensión del espacio de soluciones. Funciones linealmente independientes. Wronskiano. Ecuaciones homogéneas con coeficientes constantes. Ecuaciones no homogéneas. Ecuación de Bessel . Solución por coeficientes indeterminados. Modelado: oscilaciones libres (sistema masa-resorte). Oscilaciones forzadas. Unidad 4: Transformada de Laplace Integrales impropias. La función Gamma. Transformada de Laplace. Transformada inversa. Linealidad. Transformadas de derivadas e integrales. Traslación. Función escalón unitario. Función Delta de Dirac. Derivación e integración de transformadas. Convoluciones. Aplicación a PVI’s lineales de segundo orden. Circuitos. Unidad 5: Series de Fourier Funciones periódicas. Series trigonométricas. Series de Fourier: Fórmulas de Euler para los coeficientes de Fourier. Ortogonalidad del sistema trigonométrico. Convergencia y suma de series de Fourier. Funciones de cualquier periodo p. Funciones pares e impares. Desarrollos de medio rango. Unidad 6: Ecuaciones Diferenciales Parciales Conceptos básicos. Modelado: cuerda vibratoria y ecuación de onda. Separación de variables, uso de series de Fourier. Ecuación del calor: solución por series de Fourier. |
VII - Plan de Trabajos Prácticos |
---|
Los trabajos prácticos consistirán en resoluciones de ejercicios sobre los temas desarrollados en teoría.
|
VIII - Regimen de Aprobación |
---|
• Es obligatoria la asistencia al 80% de las clases.
• Con las evaluaciones aprobadas con nota de 7 o mas los alumnos pueden promocionar la materia. • Aprobación de dos evaluaciones parciales con un porcentaje no inferior al 60%. Cada una de ellas tendrá dos recuperaciones. • Los alumnos que hayan obtenido la condición de regular, aprobarán la materia a través de un examen final en las fechas que el calendario universitario prevé para esta actividad. |
IX - Bibliografía Básica |
---|
[1] • E. Kreyszig, Matemática Avanzada para Ingeniería, 3ª ed. Vols. I y II, Limusa Wiley, 2008.
|
X - Bibliografia Complementaria |
---|
[1] 1] • H.F. Weinberger, Ecuaciones Diferenciales en Derivadas Parciales, Reverté, 1970
[2] [2] • W. Rudin, Real and Complex Análisis, 3rd. ed., McGraw-Hill, 1987. [3] [3] • E. M. Stein and R. Shakarchi, Fourier Analysis, an introduction, Princeton University Press, 2002. [4] [4] • E. M. Stein and R. Shakarchi, Complex Analysis, Princeton University Press, 2003. [5] [5] • M. Balanzat, Matemática Avanzada para la Física, Eudeba, [6] [6] • R. V. Churchill, Fourier Series and Boundary Value Problems, McGraw-Hill, 1963. [7] [7] • L. V. Ahlfors, Análisis de una variable Compleja, Aguilar, 1966. [8] [8] • H. Cartan, Théorie élémentaire des fonctions analytiques d’une ou plousiers variables complexes, Hermann, 1969. |
XI - Resumen de Objetivos |
---|
Modelar, resolver e interpretar problemas que involucren conceptos geométricos y físicos. Distinguir y aplicar con destreza los métodos de solución de ecuaciones diferenciales de primer y segundo orden.
Resolver ecuaciones diferenciales mediante el uso de un método operacional como la transformada de Laplace. Estudiar Series de Fourier para resolver e interpretar problemas que involucran fenómenos periódicos en la física y en sus aplicaciones en la ingeniería. Resolver algunas ecuaciones diferenciales parciales importantes de la física y la ingeniería. Aprender teoría de funciones complejas que es necesaria para resolver algunos problemas interesantes de conducción del calor, dinámica de fluidos , etc. |
XII - Resumen del Programa |
---|
Unidad 1: Funciones Analíticas Complejas
Unidad 2: Ecuaciones Diferenciales Ordinarias Unidad 3: Ecuaciones Diferenciales Lineales de Segundo Orden Unidad 4: Transformada de Laplace Unidad 5: Series de Fourier Unidad 6: Ecuaciones Diferenciales Parciales |
XIII - Imprevistos |
---|
las clases se desarrollaron en forma virtual usando plataforma Classroom.
|
XIV - Otros |
---|
|