Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2019)
(Programa en trámite de aprobación)
(Programa presentado el 22/05/2019 08:52:35)
I - Oferta Académica
Materia Carrera Plan Año Periodo
LABORATORIO DE GEOMETRIA PROF.MATEM. 21/13 2019 1° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
RIDOLFI, CLAUDIA VANINA Prof. Responsable P.Asoc Exc 40 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 4 Hs. 4 Hs.  Hs. 8 Hs. 1º Cuatrimestre 13/03/2019 22/06/2019 15 120
IV - Fundamentación

La inclusión de esta asignatura en el plan de estudios está vinculada a lograr en el estudiante una adaptación al razonamiento lógico y conceptual en el área de la geometría, tanto en su lenguaje oral como escrito. Por ello el cursado de la materia demanda un esfuerzo continuo por parte del estudiante.
Por otro lado, esta asignatura está vinculada a lograr en el alumno un gusto por trabajar con conceptos geométricos y confianza para transmitir estos conocimientos. Por ello se fomenta trabajar con actividades programadas y exposiciones de clases utilizando herramientas didácticas con enfoque lúdico para transmitir los conceptos geométricos.

V - Objetivos / Resultados de Aprendizaje

• Fomentar la apreciación del valor de la geometría como herramienta didáctica para transmitir diferentes conceptos y razonamientos en el nivel medio.
• Fomentar la reflexión teórica como marco para analizar lo que ocurre en los procesos de enseñanza y aprendizaje de la geometría.
• Formalización gradual en el lenguaje geométrico, razonamiento lógico y construcciones geométricas para lograr un buen manejo de estas herramientas y conceptos.
• Desarrollar los distintos contenidos basados en actividades, así como también la adquisición de conceptos geométricos, resolución de problemas, análisis individual y grupal de actividades de enseñanza que posibilite un enriquecimiento progresivo en la forma de que los futuros profesores se planteen la actividad docente.
• Que los alumnos se pongan en contacto tempranamente con la Geometría, el Pensamiento geométrico, su Didáctica y la Transposición didáctica, conocimientos indispensables para el desempeño de su futura profesión.

VI - Contenidos
Ejes transversales:
• Resolución de problemas.
• Visualización de la geometría a partir del razonamiento inductivo.
• Historia de la Geometría
• Situaciones de enseñanza: análisis, reflexión y puesta en práctica.
• Construcciones geométricas.
• Polígonos.

Unidad 1: Introducción a la Geometría Elucídela. Inducción y Demostración.
Breves nociones históricas. Axiomas de incidencia, de orden y de las paralelas. Elementos de Geometría. Conceptos primitivos y definiciones esenciales. Puntos y rectas. Figuras convexas. Ángulos suplementarios, complementarios, adyacentes y opuestos por el vértice. Polígonos. Razonamiento en Geometría. La Inducción como método de descubrimiento. El principio de inducción matemática para demostrar proposiciones geométricas. Método deductivo. Estrategias de pensamiento geométrico. Resolución de problemas. El contraejemplo.

Unidad 2: Medida y Congruencia de segmentos y ángulos.
Medición y transporte de segmentos. Axiomas y definiciones. Congruencia de segmentos. Operaciones de suma, resta y multiplicación de segmentos. Unidades de medida de segmentos. Construcción de segmentos congruentes. Medición y transporte de ángulos. Axiomas y definiciones. Congruencia de ángulos. Construcción de ángulos congruentes. Operaciones de suma, resta y producto de ángulos. Clasificación de ángulos rectos, agudos, obtusos, suplementarios y complementarios. Unidades de medida de ángulos. Rectas perpendiculares. Propiedades.

Unidad 3: Rectas paralelas y Triángulos.
Rectas transversales y ángulos especiales. Propiedades. Suma de los ángulos interiores del triángulo. Clasificación de triángulos según sus ángulos y según sus lados. Suma de ángulos interiores y exteriores de un polígono. Polígonos Regulares. Teorema de Pons Asinorum. Desigualdad triangular. Aplicación de las paralelas en problemas de triángulos. Primer criterio de congruencia de triángulos. Resolución de problemas

Unidad 4: Congruencia de triángulos y Cuadriláteros.
Mediatriz de un segmento. Bisectriz de un ángulo. Bisectrices, medianas, alturas y mediatrices de un triángulo. La mediatriz como lugar geométrico. Criterios de congruencia de triángulos. Distancia entre rectas paralelas. La bisectriz como lugar geométrico. Cuadriláteros y paralelogramos. Definiciones. Congruencia. Propiedades y caracterizaciones. Rectángulo, rombo, cuadrado y romboide. Congruencia de polígonos. Haz de paralelas. Base media de un trapecio y de un triángulo. Resolución de problemas.

Unidad 5: La circunferencia.
La Circunferencia y sus propiedades elementales. Intersección de rectas y circunferencias. Recta tangente. Circunferencias tangentes y secantes. Ángulos en la circunferencia. Arco capaz. Circunferencia circunscripta e inscripta a un polígono. Propiedades. Resolución de problemas.

Unidad 6: Construcciones y Lugares geométricos.
Construcciones geométricas. Significado e instrumentos. Construcciones básicas. Lugares geométricos: concepto. Lugares geométricos sencillos. Medianas y bisectrices de un triángulo. Propiedades. Introducción a las construcciones por medio de lugares geométricos. Resolución de problemas. Arco capaz. División de un segmento en partes iguales. Trazado de las tangentes a una circunferencia. Construcciones de expresiones algebraicas: 4ta. Proporcional. Media geométrica. (n natural). Segmento áureo. Polígonos regulares construibles. Resolución de problemas por método de lugares. Tres problemas famosos de la geometría elemental.
Unidad 7: Proporcionalidad y Semejanza. Teorema de Thales
Teorema Fundamental de la Proporcionalidad. Teorema de Thales. Criterios de semejanza de triángulos. Proporcionalidad en triángulos rectángulos. Semejanza de figuras planas. Aplicaciones. Polígonos semejantes. Relación entre áreas de figuras semejantes. Semejanza de triángulos rectángulos

Unidad 8: Área de figuras planas. El Teorema de Pitágoras.
El concepto de área. Área del rectángulo. Área de figuras elementales; paralelogramo, triángulo, trapecio y rombo . Teorema de Pitágoras en sus diferentes formas. La semejanza y su relación con la trigonometría. Razones trigonométricas. Teorema del coseno y del seno y aplicaciones.

VII - Plan de Trabajos Prácticos

Los trabajos prácticos de aplicación conceptual serán elaborados por el docente teniendo en cuenta los ejes transversales.
Los trabajos prácticos de aplicación didáctica serán en el marco de los requerimientos:
• Resolver problemas planteados utilizando los métodos y técnicas adquiridas.
• Realizar exposiciones y presentaciones prácticas de situaciones didácticas, sobre distintos temas de Geometría.
• Construir material didáctico para la visualización en la Geometría.
• Aprovechar los materiales de internet para la aplicación de la geometría.
VIII - Regimen de Aprobación
La evaluación de la materia consistirá de dos partes:

A) Evaluación continua. Se requerirá trabajos prácticos de aplicación didáctica. En los mismos se evaluará la participación activa en la realización de los ejercicios requeridos, presentación de problemas resueltos y de exposiciones sobre temas asignados con herramientas didácticas simulando una clase en el nivel medio y teniendo en cuenta los contenidos mínimos de cada año en el nivel medio (NAP). En estas exposiciones se evaluará la didáctica, conocimiento, creatividad, construcción de material, etc. También se considerarán exposiciones de demostraciones concernientes a la materia, en donde se evaluará el entendimiento, razonamiento y buen uso de los conocimientos adquiridos.

B) Evaluaciones parciales escritas. Se tomará dos evaluaciones escritas. Cada evaluación tendrá dos recuperaciones y cada una se aprobará con el 60 %.

Régimen de Aprobación

REGULAR: para obtener la condición de alumno regular el puntaje mínimo en cada parcial escrito deberá ser de 60% y deberá presentar el 100% de los trabajos requeridos en la evaluación continua en tiempo y forma. Además deberá tener al menos un 70 % de asistencia a clase. Luego de obtener la regularidad de la materia, la misma se aprobará mediante un examen teórico-práctico en los turnos de examen según el calendario de Facultad.
PROMOCIÓN: para promocionar sin examen el alumnos debe obtener un mínimo de 70% en cada parcial escrito y deberá presentar el 100% de los trabajos requeridos en la evaluación continua. En este caso deberá aprobar un coloquio final integrador.
LIBRE: por la modalidad de la materia, no se podrá rendir la misma en condición de alumno libre.
IX - Bibliografía Básica
[1] • Geometría del plano y del espacio. G. Garguichevich. UNR Editora- Universidad Nacional de Rosario, 2007.
[2] • Geometría Moderna, estructura y método. Jungenser, Donnelly, Dolciani. Publicaciones Cultural México, 1970.
[3] • Geometría con aplicaciones a la resolución de problemas. Clemens, O’ Daffer, Cooney. Edit. Adisson Wesley Logman, México, 1998
[4] • Geometría. Curso de matemática elemental. Tomo III y IV. C. Mercado Schüler. Editorial Universitaria, S.A. Santiago de Chile, 1978.
[5] • Geometría Elemental. A.V. Pogorélov. Edit. Mir. Moscú, 1974.
X - Bibliografia Complementaria
[1] • Materiales para construir la geometría. C. Alsina, C. Burgues, J. Fortuny. Edit. Síntesis. Barcelona, 1991.
[2] • Invitación a la Didáctica de la Geometría. Alsina, Burgués, Fortuny. Edit .Síntesis. Barcelona, 1992.
[3] • ¿Porqué Geometría? Propuestas didácticas para la ES. Alsina , Fortuny, Pérez. Edit. Síntesis, 2000.
[4] • Sorpresas Geométricas. Los polígonos, los poliedros y usted. Alsina. Red. Olímpica. Argentina, 2000.
[5] • Elementos de Geometría plana según el método intuitivo-deductivo. Lépori. Edit. Cabaut y Cía. 1940.
[6] • Para Pensar Mejor. De Guzmán Miguel. Edit. Labor. España. 1991.
[7] • Elementos de Geometría. J. García Bacca. Edit. Grafos. 1944
[8] • Elementos de Geometría. Severi. Edit. Labor. 1940
[9] • Geometría- tercer curso. Repetto, Linskens, Fesquet. Edit. Capelusz y Cía. 1941.
[10] • El Honor del espíritu humano. Las matemáticas hoy. Dieudonné. Edit. Alianza. 1987.
[11] • Famous Problems of Geometry and how to solve them. B, Bold. Edit. Dover Publications, INC. 1982.
[12] • Iniciación al estudio didáctico de la Geometría. H. Itzcovich H. Edit. Zorzal. BsAs. 2004.
[13] • Pruebas y Refutaciones. La Lógica del Descubrimiento Matemático. Lákatos. Edit. Alianza Universidad. España. 1994.
[14] • Cómo Plantear y Resolver problema. Polya George. Editorial Trillas. México. 1989.
[15] • Geometrías no euclidianas. Santaló Luis. Eudeba. 1970.
[16] • La geometría en la formación de profesores. Santalo Luis. Red Olímpica. 1993.
XI - Resumen de Objetivos

• Desarrollar los distintos contenidos basados en actividades, así como también la adquisición de conceptos geométricos, resolución de problemas, análisis individual y grupal de actividades de enseñanza que posibilite un enriquecimiento progresivo en la forma de que los futuros profesores se planteen la actividad docente.
• Que los alumnos se pongan en contacto tempranamente con la Geometría, el Pensamiento geométrico, su Didáctica y la Transposición didáctica, conocimientos indispensables para el desempeño de su futura profesión.
.
XII - Resumen del Programa

Unidad 1: Introducción a la Geometría Euclídea. Inducción y Demostración.

Unidad 2: Medida y Congruencia de segmentos y ángulos.

Unidad 3: Rectas paralelas y Triángulos.

Unidad 4: Congruencia de triángulos y Cuadriláteros.

Unidad 5: La circunferencia.

Unidad 6: Construcciones y Lugares geométricos.

Unidad 7: Proporcionalidad y Semejanza. Teorema de Thales

Unidad 8: Área de figuras planas. El Teorema de Pitágoras.
XIII - Imprevistos
 
XIV - Otros