Ministerio de Cultura y Educación
Universidad Nacional de San Luis
Facultad de Ciencias Físico Matemáticas y Naturales
Departamento: Matematicas
Área: Matematicas
(Programa del año 2019)
I - Oferta Académica
Materia Carrera Plan Año Periodo
MATEMATICA I LIC. EN BIOTECNOLOGÍA 7/17-CD 2019 1° cuatrimestre
II - Equipo Docente
Docente Función Cargo Dedicación
MARTINEZ, FEDERICO NICOLAS Prof. Responsable P.Adj Exc 40 Hs
MANASERO, PAOLA BELEN Prof. Colaborador P.Adj Exc 40 Hs
PASTINE, ADRIAN GABRIEL Prof. Colaborador P.Adj Exc 40 Hs
RUBIO DUCA, ANA Prof. Colaborador P.Adj Exc 40 Hs
GIMENEZ, ANALIA VANINA Responsable de Práctico A.1ra Semi 20 Hs
GUIÑAZU, NADIA CECILIA Responsable de Práctico A.1ra Semi 20 Hs
PALATNIK, DIANA RAQUEL Responsable de Práctico A.1ra Semi 20 Hs
SANCHEZ PETERLE, MARIA BERNARD Responsable de Práctico A.1ra Semi 20 Hs
SCHVAGER, BELEN BETSABE Responsable de Práctico A.1ra Semi 20 Hs
AJATA MARCA, OLIVIA Auxiliar de Práctico A.1ra Simp 10 Hs
LEDEZMA, AGUSTINA VICTORIA Auxiliar de Práctico A.2da Simp 10 Hs
QUIROGA ANDIÑACH, MIRIANA ESTH Auxiliar de Práctico A.2da Simp 10 Hs
III - Características del Curso
Credito Horario Semanal Tipificación Duración
Teórico/Práctico Teóricas Prácticas de Aula Práct. de lab/ camp/ Resid/ PIP, etc. Total C - Teoria con prácticas de aula Desde Hasta Cantidad de Semanas Cantidad en Horas
Periodo
 Hs. 3 Hs. 4 Hs.  Hs. 7 Hs. 1º Cuatrimestre 13/03/2019 22/06/2019 15 105
IV - Fundamentación
El programa de Matemática está pensado para alumnos cuya especialización no es la matemática. Se presenta un enfoque teórico – práctico, con pocas demostraciones formales y muchas aplicaciones, con el objeto de que los estudiantes logren una comprensión clara de los conceptos. Los temas tratados en el curso son temas básicos del Cálculo. Estos conceptos permiten aplicar las técnicas desarrolladas en problemas del área de la BIOLOGÍA.
V - Objetivos / Resultados de Aprendizaje
Que el alumno obtenga herramientas básicas para resolver problemas simples.
Que pueda reconocer el problema matemático asociado a un problema de su disciplina.
VI - Contenidos
CAPÍTULO 1. FUNCIONES.
Definición, dominio, rango, representación por tablas, gráficas y fórmulas. Funciones lineales. Funciones lineales a trozos. Funciones potenciales. Funciones racionales. Funciones exponenciales. Leyes de crecimiento y de decrecimiento. Función inversa. Logaritmo. Operaciones con funciones. Funciones trigonométricas.,
CAPÍTULO 2. DERIVADA.
Velocidad promedio. Velocidad instantánea. Concepto de derivada. La derivada como función. Derivadas sucesivas. Reglas y técnicas de derivación: derivadas de funciones conocidas y de resultados operativos, regla de la cadena, derivación implícita y logarítmica. Aplicaciones de la derivada: tangente a una curva en un punto, linealización. La diferencial como una estimación del cambio absoluto de una función. Error en la aproximación. Estudio de curvas, extremos en un intervalo, crecimiento y decrecimiento, máximos y mínimos, concavidad, puntos de inflexión. Análisis de gráficas y problemas de optimización. Ecuaciones diferenciales.

CAPÍTULO 3. INTEGRAL.
Concepto de integral indefinida y propiedades. Cálculo de primitivas: integrales inmediatas, método de sustitución e integración por partes. Concepto de integral definida y propiedades. La integral definida como área de una región. Teoremas fundamentales del cálculo. Aplicaciones: cálculo de áreas , volúmenes de revolución… Integración numérica. Regla del Trapecio.

VII - Plan de Trabajos Prácticos
Los trabajos prácticos consistirán en la resolución de ejercicios y problemas sobre los temas desarrollados en la teoría, poniéndose especial énfasis en las aplicaciones a biología.
VIII - Regimen de Aprobación
Se tomarán 2 (DOS) evaluaciones parciales teórico - prácticas, con sus correspondientes recuperaciones. Podrá rendir cada parcial, el alumno que haya cumplido con el 75% de asistencia a las clases prácticas anteriores a cada evaluación parcial. Habrá dos instancias de recuperación, en las que cada alumno rendirá la/s parte/s que no tenga aprobada/s (parcial 1/parcial 2/parte teórica/parte práctica)
Para regularizar la materia el alumno deberá obtener una calificación equivalente al 60% en la parte práctica de cada parcial (en cualquiera de las instancias). El alumno que alcanzó la condición regular deberá rendir un examen final de la materia en cualquier mesa de examen determinada por el calendario académico. El examen final será teórico, oral o escrito.
Para obtener la promoción sin examen se requiere aprobar las evaluaciones con una calificación equivalente al 60% como mínimo, de la parte práctica, y un 70% de la parte teórica.
IX - Bibliografía Básica
[1] Apuntes de la materia.
[2] Stewart, James, Cálculo de una variable. Trascendentes Tempranas. 7Ma edición. Cengage Learning, 2012 México.
[3] Deborah HUGHES-Hallett- Andrew Gleason Cálculo Aplicado, CECSA ,primera edición 2002
[4] Swokowski, E. W., Cálculo con geometría analítica, Grupo Editorial Iberoamericana, 1989.
[5] Sullivan M., Precálculo, PrenticeHall Hispanoamericana, 1997.
X - Bibliografia Complementaria
[1] L. Bers, Cálculo Diferencial e Integral. Vol. I., 1ra ed., Nueva Editorial Interamericana, S.A. de C.V., 1972, México.
[2] S.Lang, Cálculo, 1ra ed., Addison-Wesley Iberoamericana, S.A., 1990, México.
[3] L. Leithold, El cálculo (con Geometría Analítica), 7ma edición, Oxford University Press-Harla México S.A. de C.V., 1998, México.
XI - Resumen de Objetivos

Que el alumno obtenga herramientas básicas para resolver problemas simples.
Que pueda reconocer el problema matemático asociado a un problema de su disciplina.
XII - Resumen del Programa

Funciones. Funciones lineales, potenciales, exponenciales, logarítmica. Operaciones con funciones. Funciones trigonométricas. Derivada y reglas de derivación. Aplicaciones de las derivadas: tangente a una curva en un punto, máximos y mínimos, crecimiento, trazado de curvas. Aproximación y error. Integral y reglas de integración. Integral definida. Aplicaciones al cálculo de áreas.

XIII - Imprevistos
 
XIV - Otros