Ministerio de Cultura y Educación Universidad Nacional de San Luis Facultad de Ciencias Físico Matemáticas y Naturales Departamento: Matematicas Área: Matematicas |
I - Oferta Académica | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
II - Equipo Docente | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
III - Características del Curso | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
IV - Fundamentación |
---|
Los temas tratados en el curso son temas básicos del Cálculo y proporcionan al alumno las herramientas necesarias para ¨ leer ¨ Matemática.
Estos conceptos básicos preparan a los alumnos para pensar y aplicar las técnicas desarrolladas en problemas propios del área de conocimiento de su carrera y otras asignaturas que necesitan del Cálculo. |
V - Objetivos / Resultados de Aprendizaje |
---|
Brindar las herramientas básicas para que los alumnos puedan leer matemática y resolver problemas simples haciendo uso de ellas. Se desea que pueda reconocer el problema matemático asociado a un problema experimental, de su disciplina. Darle al alumno una base para el cursado de la matemática siguiente.
|
VI - Contenidos |
---|
Unidad 1: Funciones.
Generalidades: definición, dominio, representación por tablas, gráficas, fórmulas y enunciados. Funciones crecientes y decrecientes. Operaciones con funciones. Composición de funciones. Función uno a uno. Función inversa. Estudio gráfico. Funciones lineales y cuadráticas. Aplicación a la resolución de problemas. Funciones potenciales. Transformaciones. Funciones definidas a trozos. Definición y propiedades de los exponentes. Funciones exponenciales. Leyes de crecimiento y de decaimiento. Noción de asíntotas de funciones. Problemas de aplicación de funciones exponenciales. Funciones logarítmicas. Propiedades de logaritmo. Resolución de ecuaciones y problemas usando logaritmo. Función logística. Trigonometría: medida de ángulos, radianes. Funciones trigonométricas. Aplicación a problemas modelados por funciones trigonométricas. Unidad 2: Derivada Razón de cambio promedio. Razón de cambio instantánea. Idea intuitiva y numérica de límite. Cálculo de límites usando un enfoque numérico y gráfico. Leyes de los límites. Idea intuitiva de continuidad. Derivada de una función en un punto. Recta tangente. Aproximaciones numéricas y gráficas. La función derivada. Derivadas superiores. Reglas de cálculo para determinar derivadas. Regla del producto y el cociente. Regla de la cadena. Estudio de curvas: Valores extremos. Criterios para determinar los valores extremos. Teorema del valor medio para derivadas. Unidad 3: Integral Noción de antiderivada. La integral indefinida. Métodos de integración: sustitución e integración por partes. Tablas para calcular integrales. Integral definida. Propiedades de la integral definida. Teorema fundamental del cálculo. Cálculo de áreas. Noción de ecuaciones diferenciales ordinarias de orden 1. |
VII - Plan de Trabajos Prácticos |
---|
Consistirá en la resolución de ejercicios y problemas preferentemente relacionados a la química, bioquímica y biología, donde se aplicarán los conceptos teóricos desarrollados.
|
VIII - Regimen de Aprobación |
---|
Se tomarán 2 (DOS) evaluaciones parciales, con sus correspondientes recuperaciones. Podrá rendir cada parcial, el alumno que haya cumplido con el 75% de asistencia a las clases prácticas anteriores a cada evaluación parcial. Habrá dos instancias de recuperación, en las que cada alumno rendirá la/s parte/s que no tenga aprobada/s (parcial 1/parcial 2)
Para regularizar la materia el alumno deberá obtener una calificación equivalente al 60% en cada parcial (en cualquiera de las instancias). El alumno que alcanzó la condición regular deberá rendir un examen final de la materia en cualquier mesa de examen determinada por el calendario académico. El examen final será teórico, oral o escrito. Para obtener la promoción sin examen se requiere aprobar las evaluaciones parciales con una calificación equivalente al 70% como mínimo. |
IX - Bibliografía Básica |
---|
[1] Stewart, James. Cálculo de una variable. Trascendentes tempranas. Séptima edición. Cengage Learning. 2012.
|
X - Bibliografia Complementaria |
---|
[1] Stewart / Day. Biocalculus. Calculus for de life sciences. Cengage Learning. 2012.
[2] Purcell / Varberg / Rigdon. Cálculo Diferencial e Integral, 9na edición, Pearson Educación, México 2007. [3] Zill Cálculo de una variable Trascendentes tempranas, 4ta Edición, MCGRAW-HILL, 2011 |
XI - Resumen de Objetivos |
---|
Brindar las herramientas básicas para que los alumnos puedan leer matemática y resolver problemas simples haciendo uso de ellas. Se desea que pueda reconocer el problema matemático asociado a un problema experimental, de su disciplina. |
XII - Resumen del Programa |
---|
Funciones. Gráficas. Aplicación de distintas funciones a modelos matemáticos. Derivada. Aplicaciones de la derivada. Integrales. Calculo de áreas. Uso de Tablas. |
XIII - Imprevistos |
---|
|
XIV - Otros |
---|
|